Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plastics are an indispensable part of modern life. Due to the harmful environmental consequences of petroleum-based plastic usage, there is an urgent need to replace them with biodegradable bioplastics that meet the sustainability standards required for a low environmental footprint. Here, we use plant-derived proteins to produce bioplastics. Since most plant-derived proteins are not water-soluble, there has always been a need to use acidic or basic solutions or organic solvents with plasticizers and crosslinkers to produce bioplastic. Here, we present a counterintuitive approach for using water-insoluble plant-derived soy and pea proteins to manufacture large-scale bioplastics using only water as a solvent without common plasticizers or crosslinkers. We show that bioplastics can form via a self-assembly process initiated by a small molecular initiator while maintaining favourable mechanical properties. The lack of crosslinking and the protein nature of the bioplastic leads to a rapid biodegradation process under various conditions. Overall, the approach we present is highly attractive in terms of cost and time, and most importantly, it obeys all the relevant principles of green chemistry in bioplastics production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884229PMC
http://dx.doi.org/10.1002/cssc.202401567DOI Listing

Publication Analysis

Top Keywords

plant-derived proteins
12
green chemistry
8
plasticizers crosslinkers
8
bioplastics
5
aqueous-based assembly
4
plant-derived
4
assembly plant-derived
4
proteins
4
proteins yields
4
yields crosslinker-free
4

Similar Publications

Effects of orange variety on the physiochemical properties of self-secretory extracellular vesicle and its application potential as nutrient-rich beverage.

Food Res Int

November 2025

State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330200, China. Electronic address:

Plant-derived extracellular vesicles have presented great potential in drug and/or nutrition delivery, but it is still unclear whether the variety affects the physicochemical properties of plant derived extracellular vesicles. In this work, the extracellular vesicles from various oranges were first characterized, including navel orange juice (NOJ), green orange juice (GOJ), bingtang orange juice (BTOJ) and blood orange juice (BOJ). The results exhibited obvious distinctions of extracellular vesicles among different oranges, such as vesicle concentration, surface potential, lipid composition, protein content and so on.

View Article and Find Full Text PDF

A systematic review on plant-derived hypoglycemic peptides: Biological sources, preparation methods, mechanism of action and structure-activity relationships.

Food Res Int

November 2025

Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest Univer

In recent years, various drugs have been proven to effectively alleviate diabetes, but these drugs are associated with serious adverse reactions. Therefore, the development of safer and more effective new hypoglycemic drugs has become a global research focus. Plant-derived hypoglycemic peptides (PDHPs), due to their remarkable hypoglycemic activity and safety, have emerged as potential candidates for preventing and improving symptoms in diabetic patients.

View Article and Find Full Text PDF

Cultured meat represents an innovative alternative to conventional livestock-derived meat, yet faces challenges in establishing efficient, safe, and sustainable culture systems. Although traditional supplements such as fetal bovine serum and bovine eye fluid provide essential growth factors for cell proliferation, their high cost, ethical concerns, and biosafety risks significantly hinder large-scale industrialization. In recent years, protein hydrolysates have emerged as promising components in serum-free media.

View Article and Find Full Text PDF

Exosomes in Disease Therapy: Plant-Derived Exosome-Like Nanoparticles Current Status, Challenges, and Future Prospects.

Int J Nanomedicine

September 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.

Exosomes are nano-sized extracellular vesicles secreted by diverse cell types that mediate intercellular communication through the transfer of proteins, lipids, and nucleic acids. Their ability to cross biological barriers and carry bioactive cargo has led to increasing interest in their use as targeted delivery systems for drugs, genes, and immunomodulatory molecules. Recently, plant-derived exosome-like nanoparticles, PLNs obtained from edible plants and medicinal herbs have emerged as a novel, biocompatible alternative to mammalian exosomes.

View Article and Find Full Text PDF

The cerambycid beetles are important components in the terrestrial ecosystem as they play a dual role in both degrading dying trees and killing healthy plants. The factors including human activity, habitat contraction, climate changes and pesticide use have been shaping the adaptation of beetles to host plants and the environment. As suggested in research on the functions of beetles' olfactory proteins, odorant binding proteins (OBPs) have been found to be involved in insecticide resistance other than chemoreception.

View Article and Find Full Text PDF