98%
921
2 minutes
20
Background: T-cell-related genes play a crucial role in LIHC development. However, a reliable prognostic profile based on risk models of these genes has yet to be identified.
Methods: Single-cell datasets from both tumor and normal tissue samples were obtained from the GEO database. We identified T-cell marker genes and developed a genetic risk model using the TCGA-LIHC dataset, which was subsequently validated with an independent GEO dataset. We also explored the relationship between risk model predictions and immune responses.
Results: We constructed a prognostic risk model using eight gene features identified through screening 860 T-cell marker genes via scRNA-seq and RNA-seq, which was subsequently integrated with the TCGA dataset. Its validity was independently confirmed using GEO and ICGC datasets. The TCGA dataset was stratified into high-risk and low-risk groups based on the risk model. Multivariate Cox regression analysis confirmed the risk score as an independent prognostic factor. GSEA indicated ribosomal transporter metabolism enrichment in the high-risk group and significant transcriptional activation in the low-risk group. ESTIMATE analysis showed higher ESTIMATE, immune, and stromal scores in the low-risk group, which also exhibited lower tumor purity than the high-risk group. Immunophenotyping revealed distinct patterns of immune cell infiltration and an immunosuppressive environment in the high-risk group.
Conclusions: This study introduces a T-cell marker-based prognostic risk model for LIHC patients. This model effectively predicted survival outcomes and immunotherapy effectiveness in LIHC patients, aligning with diverse immune responses and the distinct immunological profiles observed in the high-risk group.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467143 | PMC |
http://dx.doi.org/10.1007/s12672-024-01424-z | DOI Listing |
Am J Emerg Med
September 2025
University of Toronto, Rotman School of Management, Canada.
Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.
Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.
Arch Gerontol Geriatr
August 2025
Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China. Electronic address:
Background: Frailty is a dynamic condition that may affect mental health. This study aimed to investigate the associations of frailty and its changes with the risks of depressive symptoms across multiple regions in aging populations.
Methods: Data were drawn from five cohort studies in the United States, England, Europe, China, and Mexico.
JMIR Res Protoc
September 2025
University of Nevada, Las Vegas, Las Vegas, NV, United States.
Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.
View Article and Find Full Text PDFJCO Glob Oncol
May 2025
Department of Obstetrics and Gynaecology, Stanford University School of Medicine, Stanford, CA.
Purpose: Expanding high-risk human papillomavirus (HPV) vaccine coverage in resource-constrained settings is critical to bridging the cervical cancer gap and achieving the global action plan for elimination. Mobile health (mHealth) technology via short message services (SMS) has the potential to improve HPV vaccination uptake. The mHealth-HPVac study evaluated the effectiveness of mHealth interventions in increasing HPV vaccine uptake among mothers of unvaccinated girls aged 9-14 years in Lagos, Nigeria.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.
View Article and Find Full Text PDF