98%
921
2 minutes
20
Unlabelled: Antibiotic resistance poses a significant public health threat worldwide. The rise in antibiotic resistance and the sharp decline in effective antibiotics necessitate the development of innovative antibacterial agents. Based on the central symmetric structure of glycine-serine-glycine, combined with tryptophan and arginine, we designed a range of antimicrobial peptides (AMPs) that exhibited broad-spectrum antibacterial activity. Notably, AMP W demonstrated a rapid and effective sterilization against methicillin-resistant (MRSA), displaying both a minimum inhibitory concentration and a minimum bactericidal concentration of 8 µM. Mechanistic studies revealed that AMP W killed bacterial cells by disrupting the cytoplasmic membrane integrity, triggering leakage of cell contents. AMP W also exhibited excellent biocompatibility in both and safety evaluations. AMP W treatment significantly reduced skin bacterial load in our murine skin infection model. In conclusion, we designed a novel centrosymmetric AMP representing a promising medical alternative to conventional antibiotics for treating MRSA infections.
Importance: Increasing antibiotic resistance and the paucity of effective antibiotics necessitate innovative antibacterial agents. Methicillin-resistant (MRSA) is a major pathogen causing bacterial infections with high incidence and mortality rates, showing increasing resistance to clinical drugs. Antimicrobial peptides (AMPs) exhibit significant potential as alternatives to traditional antibiotics. This study designed a novel series of AMPs, characterized by a glycine-serine-glycine-centered symmetrical structure, and our results indicated that AMP W5 exhibited a rapid and effective bactericidal effect against MRSA. AMP W5 also demonstrated excellent biocompatibility and a bactericidal mechanism that disrupted membrane integrity, leading to leakage of cellular contents. The notable reduction in skin bacterial load observed in mouse models reinforced the clinical applicability of AMP W5. This study provides a promising solution for addressing the increasing threat of antibiotic-resistant bacteria and heralds new prospects for clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537005 | PMC |
http://dx.doi.org/10.1128/spectrum.00265-24 | DOI Listing |
J Appl Microbiol
September 2025
Sivas Cumhuriyet University, Faculty of Medicine, Department of Medical Microbiology, 58140 Sivas, Türkiye.
Aims: The increasing antimicrobial resistance, particularly in Acinetobacter baumannii, complicates the treatment of infections, leading to higher morbidity, mortality, and economic costs. Herein, we aimed to determine the in vitro antimicrobial, synergistic, and antibiofilm activities of colistin (COL), meropenem, and ciprofloxacin antibiotics, and curcumin, punicalagin, geraniol (GER), and linalool (LIN) plant-active ingredients alone and in combination against 31 multidrug-resistant (MDR) A. baumannii clinical isolates.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, Villigen, PSI, 5232, Switzerland.
LL-37 and its variants with amphiphilic structure can modulate amyloid-β (Aβ) fibril formation, but the detailed mechanism behind it is still unclear. By using four different peptides (LL-37, LL-37, LL-37, LL-37), we found these peptides affect Aβ40 aggregation differently. Nanoscale analysis showed that all LL-37 peptides form hetero-oligomers and nanoclusters with Aβ40, but LL-37 and LL-37, which exhibit the strongest inhibition of Aβ fibrillation, form more hetero-oligomers and smaller nanoclusters.
View Article and Find Full Text PDFToxicon
September 2025
Instituto Nacional de Pesquisas da Amazônia - INPA.
Social wasps make up a significant part to the diversity of the Hymenoptera order, one of the most varied insect groups. Beyond their ecological importance, these insects use their venom for defense, protecting their colonies. The venom of social wasps are rich in biologically active substances, including biogenic amines, peptides, proteins, enzymes, allergens, and volatile compounds.
View Article and Find Full Text PDFMicrobiol Res
August 2025
Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Joint Research Unit 1158 BioEcoAgro, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium. Electronic address:
The biocontrol fungus Purpureocillium lilacinum PLBJ-1 produces leucinostatins, a class of non-ribosomal peptides (NRPs) with broad-spectrum antimicrobial activities. However, the molecular mechanisms underlying the optimization of culture conditions for leucinostatin production remain unexplored. Previous research showed that PLBJ-1 synthesizes leucinostatins more effectively in hand-made Potato Dextrose Broth (PDB-M) than in commercially available PDB (PDB-C).
View Article and Find Full Text PDFMol Immunol
September 2025
Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, 221005, India. Electronic address:
The innate immune response is a double-edged sword in insects, comprising the humoral and cellular mechanisms to fight and eliminate pathogens. The humoral response is achieved by the production of antimicrobial peptides, which are secreted in the hemolymph. The cellular responses are mediated by phagocytosis, encapsulation and melanization.
View Article and Find Full Text PDF