Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hyperpolarized carbon-13 (C) magnetic resonance imaging (MRI) has shown promise for non-invasive assessment of the cerebral metabolism of [1-C]pyruvate in both healthy volunteers and patients. The exchange of pyruvate to lactate catalysed by lactate dehydrogenase (LDH) and that of pyruvate flux to bicarbonate through pyruvate dehydrogenase (PDH) are the most widely studied reactions in vivo. Here we show the potential of the technique to probe additional enzymatic activity within the brain. Approximately 50 s after intravenous injection of hyperpolarized pyruvate, high-flip-angle pulses were used to detect cerebral C-labelled carbon dioxide (CO), in addition to the C-bicarbonate (HCO ) subsequently formed by carbonic anhydrase (CA). Brain pH measurements, which were weighted towards the extracellular compartment, were calculated from the ratio of HCO to CO in seven volunteers using the Henderson-Hasselbalch equation, demonstrating an average pH ± SD of 7.40 ± 0.02, with inter-observer reproducibility of 0.04. In addition, hyperpolarized [1-C]aspartate was also detected, demonstrating irreversible pyruvate carboxylation to oxaloacetate by pyruvate carboxylase (PC) and subsequent transamination by aspartate aminotransferase (AST), with the average flux being on average 11% ± 3% of that through PDH. A hyperpolarized [1-C]alanine signal was also detected, but this was localized to extracranial muscle tissue in keeping with skeletal alanine aminotransferase (ALT) activity. The results demonstrate the potential of hyperpolarized C-MRI to assess cerebral and extracerebral [1-C]pyruvate metabolism in addition to LDH and PDH activity. Non-invasive measurements of brain pH could be particularly important in assessing cerebral pathology given the wide range of disease processes that alter acid-base balance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.5271DOI Listing

Publication Analysis

Top Keywords

enzymatic activity
8
activity brain
8
extracranial muscle
8
hyperpolarized
6
pyruvate
6
measuring cerebral
4
cerebral enzymatic
4
activity
4
brain
4
brain extracranial
4

Similar Publications

NU-1000/Cu Nanocomposite-Immobilized Organophosphate Hydrolase for the Cascade Conversion of Methyl Parathion to 4-Aminophenol.

Langmuir

September 2025

State Key Laboratory of Synthetic Biology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.

Effective degradation and detoxification of the highly toxic organophosphate pesticide methyl parathion (MP) are important for pollution treatment and sustainable development. Enzymatic hydrolysis of MP by organophosphate hydrolase (OPH) is an effective way. However, hydrolytic product 4-nitrophenol (4-NP) remains environmentally hazardous.

View Article and Find Full Text PDF

Microbial Physiological Adaptation to Biodegradable Microplastics Drives the Transformation and Reactivity of Dissolved Organic Matter in Soil.

Environ Sci Technol

September 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.

The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.

View Article and Find Full Text PDF

Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.

View Article and Find Full Text PDF

Immunostimulatory and Immunomodulatory Effects of Vitamin B12 Derivatives on Macrophages Through the Modulation of JNK Pathway.

Cell Biochem Biophys

September 2025

Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34003, Türkiye, Turkey.

Vitamin B12 is a vital water-soluble vitamin containing a central cobalt atom within its corrin ring structure. It exists in several derivatives, among which methylcobalamin (MeCbl) and adenosylcobalamin (AdCbl) are the biologically active forms that serve as cofactors in essential enzymatic reactions. Although the neurological and hematological consequences of vitamin B12 deficiency have been extensively studied, its role in immune regulation remains less well understood.

View Article and Find Full Text PDF

The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.

View Article and Find Full Text PDF