98%
921
2 minutes
20
Elevated concentrations of formaldehyde and other carbonyl compounds are frequently observed in the marine atmosphere but are often significantly underestimated by atmospheric models. To evaluate the potential impact of marine sources on atmospheric formaldehyde, high-resolution measurements were conducted at a coastal site (∼15 m from the sea) during the summer in Qingdao, China. Observed formaldehyde levels averaged 2.4 ± 0.9 ppbv (1 ppbv = 10 L L), with peaks reaching 6.8 ppbv. Backward trajectories indicate that formaldehyde concentrations remained high in marine air masses. Formaldehyde exhibited weak correlations with primary pollutants such as NO and CO but showed strong correlations with marine tracers, notably methyl ethyl ketone and 1-butene. Chamber experiments confirmed that the photodecomposition of Enteromorpha released large amounts of formaldehyde and marine tracer species. When normalized to acetylene, the levels of formaldehyde, 1-butene, and MEK increased by factors of 3.8, 8.1, and 3.5, respectively. Results from an observation-based chemical box model simulation, which utilizes the Master Chemical Mechanism (MCM), revealed that formaldehyde contributes 56% to the primary source of HO radicals, while neglecting formaldehyde chemistry would lead to a 15% reduction in coastal ozone production rates. This study interlinks oceanic biology and atmospheric chemistry, advancing the understanding of the ocean's role as a significant source of organic compounds and its contribution to carbon cycling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2024.09.024 | DOI Listing |
Zhonghua Yan Ke Za Zhi
September 2025
Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing 400016,
To explore optimized protocols for paraffin section preparation of the eyeball to enhance the histological visualization of key ocular structures. It was an experimental research, conducted from September 2022 to September 2024. The first experiment involved 18 porcine eyeballs, which were divided into five groups (six subgroups) by the random number table method.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Applied Sciences, National Institute of Technology Delhi, Delhi 110036, India.
The degradation of colorless tetracycline hydrochloride (TCH), a widely used antibiotic, is a significant environmental concern due to its persistence in aquatic systems. The zinc sulfide (ZnS) nanoparticle fabricated melamine-formaldehyde polymer (MFP)-based nanocomposite (ZnS-MFP) was prepared via a hydrothermal polymerization method, followed by surface modification through a simple precipitation route. The degradation of TCH through photocatalysis adheres to pseudo-first-order kinetics with a significantly faster rate under natural sunlight than under artificial bulb light.
View Article and Find Full Text PDFRSC Adv
September 2025
Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Techniques (FST-BM), University of Sultan Moulay Slimane (USMS) Béni-Mellal 23000 Morocco
Biopolymers derived from natural sources are sustainable, non-toxic, and biodegradable, making them attractive alternatives to fossil-based polymers. Among these, lignin has garnered significant attention due to its potential in adhesive applications. In this study, lignin was extracted from redwood ( L.
View Article and Find Full Text PDFEnviron Technol
September 2025
School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing, People's Republic of China.
As urbanization accelerates, the issue of pollutant discharge from building materials has become the focus of public attention. Conducted in a ventilated environmental chamber, the experiments investigated the emission characteristics of VOCs from dry and wet building materials, focusing on the influencing factors, such as temperature, relative humidity (RH), ventilation, and seasonality. The impact of influencing factors was quantified using a one-factor-at-a-time control method.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China; College of Biomass Science and Engineering, Sichuan Univer
Dialdehyde polysaccharides (DAPs) were prepared as tanning agents via periodate oxidation, intentionally omitting ethanol precipitation to maintain molecular weight polydispersity, thus optimizing tanning performance. However, the presence of formaldehyde in these DAPs compromised their environmental sustainability. This study systematically explored the impact of polysaccharide structures on formaldehyde formation in DAPs.
View Article and Find Full Text PDF