Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pepper ( spp.) has a long domestication history and has accumulated diverse fruit shape variations. The illustration of the mechanisms underlying different fruit shape is not only important for clarifying the regulation of pepper fruit development but also critical for fully understanding the plant organ morphogenesis. Thus, in this study, morphological, histological and transcriptional investigations have been performed on pepper accessions bearing fruits with five types of shapes. From the results it can be presumed that pepper fruit shape was determined during the developmental processes before and after anthesis, and the anthesis was a critical developmental stage for fruit shape determination. Ovary shape index variations of the studied accessions were mainly due to cell number alterations, while, fruit shape index variations were mainly attributed to the cell division and cell expansion variations. As to the ovary wall thickness and pericarp thickness, they were regulated by both cell division in the abaxial-adaxial direction and cell expansion in the proximal-distal and medio-lateral directions. Transcriptional analysis discovered that the OFP-TRM and IQD-CaM pathways may be involved in the regulation of the slender fruit shape and the largest ovary wall cell number in the blocky-shaped accession can be attributed to the higher expression of , which may lead to an increased cytokinin level. Genes related to development, cell proliferation/division, cytoskeleton, and cell wall may also contribute to the regulation of helical growth in pepper. The insights gained from this study are valuable for further investigations into pepper fruit shape development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448748PMC
http://dx.doi.org/10.7717/peerj.17909DOI Listing

Publication Analysis

Top Keywords

fruit shape
28
shape variations
12
pepper fruit
12
fruit
9
morphological histological
8
mechanisms underlying
8
underlying fruit
8
shape
8
cell
8
cell number
8

Similar Publications

Background: Children in the United States have poor diet quality, increasing their risk for chronic disease burden later in life. Caregivers' feeding behaviors are a critical factor in shaping lifelong dietary habits. The Strong Families Start at Home/Familias Fuertes Comienzan en Casa (SFSH) was a 6-month, home-based, pilot randomized-controlled feasibility trial that aimed to improve the diet quality of 2-5-year-old children and promote positive parental feeding practices among a predominantly Hispanic/Latine sample.

View Article and Find Full Text PDF

directional abscission of dandelion seeds.

J R Soc Interface

September 2025

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.

Seed dispersal through wind was historically considered a random process; however, plants can influence their dispersal through non-random seed detachment or abscission. Dandelion seeds facing the wind tend to abscise before those facing downwind, yet the mechanism that supports this has remained unclear. We measured the force needed for abscission in different directions and performed imaging of the detachment process.

View Article and Find Full Text PDF

Dissecting the microbial, physicochemical, and flavor dynamics of core and peel layers in Houhuo Daqu: Insights into quality regulation.

Food Res Int

November 2025

Brewing Technology Industrial College, Hubei University of Arts and Science, Xiangyang, Hubei Province 441053, PR China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province 441053, PR China; Xiangyang Lacti

Houhuo Daqu (HHD) exhibits significant heterogeneity between its core and peel layers, yet their differences remain underexplored. This study integrates metagenomic sequencing and electronic sensory technologies to compare the physicochemical properties, microbial communities, and flavor profiles of HHD's core and peel. Results reveal distinct microbial communities and diversity between the layers.

View Article and Find Full Text PDF

Lipid oxidation driven olefinic aldehyde biosynthesis shapes aged aroma in Qingzhuan tea.

Food Chem X

August 2025

Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Qingzhuan Tea Engineering Research Centre, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China.

This study systematically investigates lipid dynamics and their role in aroma formation during Qingzhuan tea (QZT) processing. Using UHPLC-MRM-MS/MS and GC-MS, we analyzed fatty acids (FAs) and oxidized fatty acids (OFAs) across seven processing stages, identifying 31 FAs and 55 OFAs. Polyunsaturated fatty acids (PUFAs), particularly -linolenic acid (C18:3) and linoleic acid (C18:2), dominated the lipid profiles (43.

View Article and Find Full Text PDF

Omics Insights Into the Effects of Highbush Blueberry and Cranberry Crop Agroecosystems on Honey Bee Health and Physiology.

Proteomics

September 2025

Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.

Honey bees (Apis mellifera) are vital pollinators in fruit-producing agroecosystems like highbush blueberry (HBB) and cranberry (CRA). However, their health is threatened by multiple interacting stressors, including pesticides, pathogens, and nutritional changes. We tested the hypothesis that distinct agricultural ecosystems-with different combinations of agrochemical exposure, pathogen loads, and floral resources-elicit ecosystem-specific, tissue-level molecular responses in honey bees.

View Article and Find Full Text PDF