98%
921
2 minutes
20
Rapid bulk charge recombination and mediocre surface catalytic sites harshly restrict the photocatalytic activities. Herein, the aforementioned concerns are well addressed by coupling macroscopic spontaneous polarization and atomic-site engineering of CdS single-crystal nanorods for superb H photo-production. The oriented growth of CdS nanorods along the polar axis, vectorially superimposing substantial polar units with orderly arrangement, renders a strong polarization electric field (20.1 times enhancement), which boosts bulk charge separation with an efficiency up to 72.4% (80.4-fold). Remarkably, polarization electric field alters the chemical state of Pt single sites by orderly reducing the binding energy of Pt atom with stepwise polarization enhancement of CdS substrate, which increases the onsite electron density of Pt from 10.232 to 10.261e and *H key intermediates, providing preponderant Volmer-Tafel/Volmer-Heyrovsky reaction pathways with significantly decreased energy barriers for H production. Thus, highly polarized CdS nanorods with atomically dispersed Pt sites perform an outstanding H space-time yield of 118.5 mmol g h and apparent quantum efficiency of 57.7% at λ = 420 nm, and a record-high H turnover frequency of 57798.4 h, being one of the best catalysts for photocatalytic H evolution. This work highlights the function of polarization in manipulating charge separation and catalytic reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202411339 | DOI Listing |
J Phys Chem Lett
September 2025
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States.
Defects significantly influence charge transport in CHNHPbI (MAPbI) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (I) defect behavior at different positions in the TiO/MAPbI system. In the perovskite bulk-like region, I exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
Although improving the charging cutoff voltage is an effective strategy to increase its capacity, LiCoO ("LCO") undergoes rapid capacity decay due to severe structural and interface degradations at high voltages. Herein, we proposed a multifunctional surface modification by coating nano-sized entropy materials (Li-La-Ti-Zr-Co-O, Nano-MEO). Nano-MEO rivets were constructed on the surface of LCO, which stabilized the fragile surface.
View Article and Find Full Text PDFNanoscale Horiz
September 2025
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.
Nanostructuring, which shortens lithium-ion diffusion lengths, can help facilitate pseudocapacitive behavior in some battery materials. Here, nanostructured LiNiCoAlO (NCA), with porosity and decreased crystallite size compared to commercial bulk NCA, was synthesized using a colloidal polymer template. Small particles (∼150 nm) were obtained using rapid thermal annealing (RTA), while medium particles (∼300 nm) were obtained with conventional heating.
View Article and Find Full Text PDFNanoscale
September 2025
Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
[1]Benzothieno[3,2-][1]benzothiophene (BTBT)-based molecules exhibit remarkably high hole mobility, sparking interest in their charge transport mechanisms. However, for thin films, the theoretically proposed mixed-orbital charge transport (MOCT) mechanism, which involves the hybridization of different frontier orbitals between neighboring molecules in the bulk, remains unexplored both experimentally and theoretically. In this study, we prepared a monolayer of 2,7-diphenyl-BTBT (DPh-BTBT) with a unique one-dimensional structure and investigated its molecular-level structure and electronic state.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
The exceptional performance of ceria (CeO) in catalysis and energy conversion is fundamentally governed by its defect chemistry, particularly oxygen vacancies. The formation of each oxygen vacancy (V) is assumed to be compensated by two localized electrons on cations (Ce). Here, we show by combining theory with experiment that while this 1 V: 2Ce ratio accounts for the global charge compensation, it does not apply at the local scale, particularly in nanoparticles.
View Article and Find Full Text PDF