98%
921
2 minutes
20
bacteria are enriched on poly(ethylene terephthalate) (PET) microplastics in wastewaters and urban rivers, but the PET-degrading mechanisms remain unclear. Here, we investigated these mechanisms with KF-1, a wastewater isolate, by combining microscopy, spectroscopy, proteomics, protein modeling, and genetic engineering. Compared to minor dents on PET films, scanning electron microscopy revealed significant fragmentation of PET pellets, resulting in a 3.5-fold increase in the abundance of small nanoparticles (<100 nm) during 30-day cultivation. Infrared spectroscopy captured primarily hydrolytic cleavage in the fragmented pellet particles. Solution analysis further demonstrated double hydrolysis of a PET oligomer, bis(2-hydroxyethyl) terephthalate, to the bioavailable monomer terephthalate. Supplementation with acetate, a common wastewater co-substrate, promoted cell growth and PET fragmentation. Of the multiple hydrolases encoded in the genome, intracellular proteomics detected only one, which was found in both acetate-only and PET-only conditions. Homology modeling of this hydrolase structure illustrated substrate binding analogous to reported PET hydrolases, despite dissimilar sequences. Mutants lacking this hydrolase gene were incapable of PET oligomer hydrolysis and had a 21% decrease in PET fragmentation; re-insertion of the gene restored both functions. Thus, we have identified constitutive production of a key PET-degrading hydrolase in wastewater , which could be exploited for plastic bioconversion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526368 | PMC |
http://dx.doi.org/10.1021/acs.est.4c06645 | DOI Listing |
ChemSusChem
September 2025
School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, 175005, Himachal Pradesh, India.
Accumulation of waste plastics on the earth's surface is a global challenge. There is a possibility of turning this challenge into an opportunity by plastic upcycling. In this work, the potential of bismuth oxychloride (BiOCl) as a heterogeneous catalyst for the glycolysis of polyethylene terephthalate (PET) is reported.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China. Electronic address:
Microplastics (MPs) and the plastisphere they form pose substantial ecological risks in aquatic environments and wastewater treatment processes. As a unique niche, the evolution of plastisphere in anaerobic ammonium oxidation (anammox) systems remains poorly understood. This study investigated the physicochemical evolution of polyethylene terephthalate (PET) MPs and microbial succession within the plastisphere during a 30-day incubation with anammox granular sludge.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; Mass Spectrometry Based Converging Research Institute, Daegu 41566, Republic of Korea. Electronic address:
Polyethylene terephthalate (PET) is one of the most widely used plastics, particularly in packaging and textiles. Although PET is widely used in consumer products, only 10-28 % is recycled. Most PET waste is not properly managed.
View Article and Find Full Text PDFFood Chem Toxicol
September 2025
Material Center, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei, 230022, China. Electronic address:
Polyethylene terephthalate (PET) microplastics (MPs) have emerged as a significant environmental contaminant with potential adverse effects on human health, particularly in cancer biology. This study investigates the molecular and immunological mechanisms underlying the influence of PET-MPs on breast cancer (BC) progression. Employing an integrative approach that combines bioinformatics analysis of public cancer databases (TCGA), molecular docking simulations, and in vitro experiments, we identified four immune-related genes-CCL19, KLRB1, CD40LG, and IGLL5-that are potentially modulated by PET-MPs.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China.
Flexible strain sensors are pivotal for the advancement of robotics, wearable healthcare, and human-machine interaction in the post-Moore era. However, conventional materials struggle to simultaneously achieve high sensitivity, a broad strain range, and low power consumption for cutting-edge applications. In this work, the issue is addressed through single crystal 1D tellurium nanoribbons (NRs), which are synthesized on SiO/Si substrate by hydrogen-assisted chemical vapor deposition (CVD) method.
View Article and Find Full Text PDF