Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Moyamoya disease (MMD) is a chronic cerebrovascular disorder that can lead to stroke and neurological dysfunctions. Given the largely sporadic nature and the role of gene-environment interactions in various diseases, we examined epigenetic modifications in MMD. We performed genome-wide DNA methylation using Illumina 850 K Methylation EPIC BeadChip, in two racially distinct adult female cohorts: a non-Asian cohort (13 MMD patients and 7 healthy controls) and an Asian cohort (14 MMD patients and 3 healthy controls). An additional external cohort with both sexes (females: 5 MMD patients and 5 healthy controls, males: 5 MMD patients and 5 healthy controls) was included for validation. Our findings revealed strikingly low DNA methylation variability between MMD patients and healthy controls, in both MMD female cohorts. In the non-Asian cohort, only 6 probes showed increased variability versus 647 probes that showed decreased variability. Similarly, in the Asian cohort, the MMD group also displayed a reduced methylation variability across all 2845 probes. Subsequent analysis showed that these differentially variable probes are located on genes involved in key biological processes such as methylation and transcription, DNA repair, cytoskeletal remodeling, natural killer cell signaling, cellular growth, and migration. These findings mark the first observation of low methylation variability in any disease, contrasting with the high variability observed in other disorders. This reduced methylation variability in MMD may hinder patients' adaptability to environmental shifts, such as hemodynamic stress, thereby influencing vascular homeostasis and contributing to MMD pathology. These findings offer new insights into the mechanisms of MMD and potential treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202675PMC
http://dx.doi.org/10.1007/s12975-024-01299-wDOI Listing

Publication Analysis

Top Keywords

methylation variability
20
mmd patients
20
patients healthy
20
healthy controls
20
dna methylation
12
mmd
12
cohort mmd
12
methylation
9
genome-wide dna
8
low methylation
8

Similar Publications

Objective: Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized pathologically by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a significant decline in striatal dopamine levels. This study aims to systematically analyze alterations in striatal metabolites across different stages of PD to identify potential biomarkers, elucidate pathological mechanisms, and explore therapeutic targets.

Methods: A total of 72 mice were divided into six groups, including one control group and five PD model groups (W1-W5, representing distinct stages based on the duration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid induction).

View Article and Find Full Text PDF

Electrocatalytic water oxidation with bioinspired cubane-type Co complexes.

Dalton Trans

September 2025

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, Ciudad de México, 04510, Mexico.

Synthesis, characterization, and electrocatalytic water oxidation studies of the cubane-type complexes [(μ-)CoCl(MeOH)] (1) and [(μ-)CoCl(MeOH)] (2) are herein reported. Cubanes 1 and 2 were obtained in high yields under mild conditions by self-assembly of the ligands = 1--2-benzimidazolylmethanol and = 1-methyl-2-benzimidazolylmethanol with CoCl·6HO in basic methanolic solution. Both compounds feature a cubane-type structure in which the central {CoO} units are built by four Co centers coordinated by alkoxide-bridged oxygen and nitrogen atoms from the deprotonated ligands and stabilized by MeOH molecules and chloride ions.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) imaging of ionic liquid (IL) distribution in electric double-layer (EDL) devices has been actively explored to understand the origin of their excellent performance. However, this has been impeded by insufficient resolution or a poor understanding of the mechanisms of 3D IL imaging. Here, we overcome these difficulties using 3D scanning force microscopy (3D-SFM) with variable tip/sample bias voltages for visualizing 3D ,-diethyl--methyl--(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEME-TFSI) distributions on a Au electrode in EDL capacitors.

View Article and Find Full Text PDF

Clinical differences in monozygotic twins with Rett syndrome: case report and systematic review.

Orphanet J Rare Dis

September 2025

Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Epicare Network for Rare Disease, Genoa, Italy.

Background: Rett Syndrome (RTT) is a rare, and severe neurodevelopmental disorder that primarily affects females and is primarily (> 96%) due to pathogenic loss-of-function genetic variants of methyl-CpG-binding protein 2 (MECP2). Despite the rarity of the syndrome, sporadic twin cases have been reported. The descriptions have often focused on the phenotype, emphasizing differences or similarities.

View Article and Find Full Text PDF

To address the low biotransformation efficiency and high interindividual variability of clopidogrel (Clop), we developed a novel deuterated Clop-ferulic acid derivative (Dclop-FA), featuring an FA ester pharmacophore at the C2 and a deuterated methyl ester at the C7 position. Pharmacokinetic studies in rats showed that a single oral dose of Dclop-FA achieved 6.0-fold greater systemic exposure to the active metabolite versus equimolar coadministration of Clop and FA.

View Article and Find Full Text PDF