98%
921
2 minutes
20
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant cardiac disorder characterized by ventricular hypertrophy resulting from the disordered arrangement of myocardial cells, which leads to impaired cardiac function or death. Autophagy (AT) is a biochemical process through which lysosomes degrade and recycle damaged or discarded intracellular components to protect cells against external environmental conditions, such as hypoxia and oxidative stress. AT is closely related to HCM, and thus, serves an important role in myocardial hypertrophy. However, the precise mechanism underlying the regulation of AT in cardiac hypertrophy remains elusive. The present study aimed to examine the role and mechanisms of AT-related genes (ARGs) in HCM through bioinformatics analysis and experimental validation and to identify potential targeted drugs for HCM. In this study, cardiac samples were obtained from healthy individuals and patients with HCM from the GEO database, and screened for differentially expressed ARGs to further investigate their potential interactions and functional pathways. These genes were subjected to functional enrichment analysis to identify potential crosstalk and involved pathways. Based on a protein-protein interaction network, EIF4EBP1, MCL1, PIK3R1, CCND1 and PPARG were identified as potential biomarkers for the diagnosis and treatment of HCM. Furthermore, 10 components with therapeutic potential for HCM were predicted based on the aforementioned hub genes. The results of bioinformatics analysis were validated using H9c2 cells stimulated with angiotensin II, which represented an model of cardiac hypertrophy. Overall, the present study demonstrated that the expression levels of ARGs were substantially altered in HCM. Therefore, these genes may be used as diagnostic biomarkers and therapeutic targets for HCM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443588 | PMC |
http://dx.doi.org/10.3892/etm.2024.12729 | DOI Listing |
Cureus
August 2025
Medicine/Cardiology, Madigan Army Medical Center, Tacoma, USA.
Apical hypertrophic cardiomyopathy (ApHCM) is an uncommon, nonobstructive form of hypertrophic cardiomyopathy (HCM) that is associated with an increased risk of ventricular aneurysms, atrial fibrillation, heart failure, and cardiac death. In this case report, a 63-year-old male patient was found to have deeply negative T waves on electrocardiogram (EKG) during a routine preoperative evaluation in an outpatient internal medicine clinic. Imaging with echocardiography and cardiac magnetic resonance confirmed the diagnosis of ApHCM.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2025
Department of Cardiology, Dongguan Tai-xin Hospital, Dongguan, China.
Objective: This study sought to identify key prognostic factors in patients with hypertrophic cardiomyopathy (HCM) and heart failure with preserved ejection fraction (HFpEF), emphasizing the prognostic role of free triiodothyronine (FT3) levels.
Research Design And Methods: This retrospective cohort study enrolled 992 HCM-HFpEF patients from two Chinese medical centers between 2009 and 2019, excluding those with thyroid-affecting medications or disorders. Data on demographic and clinical variables, including FT3, were analyzed using univariate and multivariate Cox regression, Kaplan-Meier (KM) survival analysis, and restricted cubic spline (RCS) analysis to explore prognostic factors and FT3's nonlinear predictive value.
Cardiovasc Endocrinol Metab
December 2025
Department of Endocrinology, Scientific Services, USV Pvt. Ltd, Mumbai, Maharashtra, India.
Background: Co-occurrence of type 2 diabetes mellitus (T2DM) and heart failure (HF) elevates the risk of morbidity and mortality. Recent research emphasizes treatment strategies that go beyond glycemic control to enhance heart function.
Aim: To assess the effectiveness and safety of the fixed-drug combination of dapagliflozin and sitagliptin (FDC D/S) in T2DM patients with HF.
Biomed Eng Lett
September 2025
Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China.
Abstract: Hypertrophic cardiomyopathy (HCM) is a common hereditary heart disease and is the leading cause of sudden cardiac death in adolescents. Septal hypertrophy (SH) and apical hypertrophy (AH) are two common types. The former is characterized by abnormal septal myocardial thickening and the latter by left ventricular apical hypertrophy, both of which significantly increase the risk of heart failure, arrhythmias, and other serious complications.
View Article and Find Full Text PDFJ Thorac Cardiovasc Surg
September 2025
Deparment of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea. Electronic address:
Objective: To evaluate the impact of CT planning on surgical myectomy outcomes in patients with hypertrophic cardiomyopathy (HCM) and left ventricular outflow tract (LVOT) and/or mid-cavity obstruction, by comparing these outcomes with those of conventional surgical myectomy.
Methods: This prospective cohort study included patients who underwent surgical septal myectomy for HCM with LVOT and/or mid-cavity obstruction between January 2019 and May 2024 at a single tertiary center. In the CT-planned myectomy group, an expert radiologist simulated the target myectomy site through a series of post-processing methods to plan the surgical approach, provide a surgeon's view that closely resembles the actual perspective in the operating room, and present the target myectomy volume.