Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapid and accurate detection of programmed death-ligand 1 (PD-L1) expression is of great value in the diagnosis and treatment of tumors. ELISA-based traditional method is the gold standard for protein detection, but there are still some shortcomings, especially the antigen-antibody dependence, greatly increased the detection time and cost. This work constructed a label-free fluorescent probe for rapid and sensitive detection of PD-L1 using a truncated aptamer as recognition molecules and double-stranded DNA specific dyes (SYBR Green I) as signal units. After a series of optimization conditions, this probe has good detection capability for PD-L1 in buffer solution with the detection limit as low as 0.68 ng/mL. Due to the specific recognition ability of aptamer and target, this method also has good selectivity for PD-L1 detection. The recovery of PD-L1 in human serum samples ranges from 86.20 to 96.36%. Compared with other methods, this strategy does not need to be marked, and does not need other complex design and purification process, but simple operation process and strong anti-interference ability. The whole detection process can be completed within 20 min and has good application prospect. This work will provide reference for drug dosage and prognosis evaluation of specific tumor therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-024-03960-xDOI Listing

Publication Analysis

Top Keywords

detection programmed
8
programmed death-ligand
8
truncated aptamer
8
sybr green
8
detection
8
pd-l1
5
label-free detection
4
death-ligand prognosis
4
prognosis truncated
4
aptamer sybr
4

Similar Publications

Accurate determination of the parameters of each high purity germanium, HPGe detectors ensure the precision of quantitative results obtained from spectrum analysis. This study presents a comprehensive performance evaluation and long-term quality control assessment of a high-purity germanium (HPGe) gamma spectrometry system that has been operational for over 15 years. Key spectrometric measures were recorded, including energy resolution, peak shape ratios, asymmetry, peak-to-Compton ratio, relative efficiency, electronic noise, minimum detectable activity (MDA), and repeatability and reproducibility of the system.

View Article and Find Full Text PDF

Leveraging GPT-4o for Automated Extraction and Categorization of CAD-RADS Features From Free-Text Coronary CT Angiography Reports: Diagnostic Study.

JMIR Med Inform

September 2025

Departments of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China, 86 18922109279, 86 20852523108.

Background: Despite the Coronary Artery Reporting and Data System (CAD-RADS) providing a standardized approach, radiologists continue to favor free-text reports. This preference creates significant challenges for data extraction and analysis in longitudinal studies, potentially limiting large-scale research and quality assessment initiatives.

Objective: To evaluate the ability of the generative pre-trained transformer (GPT)-4o model to convert real-world coronary computed tomography angiography (CCTA) free-text reports into structured data and automatically identify CAD-RADS categories and P categories.

View Article and Find Full Text PDF

Background: Prior studies have implicated diabetes as a risk factor for pancreatic cancer, yet the impact of diabetes progression on pancreatic cancer incidence remains unclear. We aim to assess pancreatic cancer risk across different stages of diabetes.

Methods: Employing a predefined search strategy, we conducted a literature review of electronic databases up to 29 February 2024.

View Article and Find Full Text PDF

Background: Breast cancer is the most common cancer among women and a leading cause of mortality in Europe. Early detection through screening reduces mortality, yet participation in mammography-based programs remains suboptimal due to discomfort, radiation exposure, and accessibility issues. Thermography, particularly when driven by artificial intelligence (AI), is being explored as a noninvasive, radiation-free alternative.

View Article and Find Full Text PDF

Precise delivery of nanoliter-scale reagents is essential for high-throughput biochemical assays, yet existing platforms often lack real-time control and selective content fusion. Conventional methods rely on passive encapsulation or stochastic pairing, limiting both throughput and biochemical specificity. Here, we introduce an on-demand nanoliter delivery platform that seamlessly integrates electrical sensing, triggered droplet merging, and passive sorting in a single continuous flow.

View Article and Find Full Text PDF