98%
921
2 minutes
20
Carotenoids, known for their antioxidant properties, have garnered significant attention for their potential antitumour activities. This comprehensive review aims to elucidate the diverse mechanisms by which carotenoids exert antitumour effects, focusing on both well-established and novel findings. We explore their role in inducing apoptosis, inhibiting cell cycle progression and preventing metastasis by affecting oncogenic and tumour suppressor proteins. The review also explores the pro-oxidant function of carotenoids within cancer cells. In fact, although their overall contribution to cellular antioxidant defences is well known and significant, some carotenoids can exhibit pro-oxidant effects under certain conditions and are able to elevate reactive oxygen species (ROS) levels in tumoural cells, triggering mitochondrial pathways that would lead to cell death. The final balance between their antioxidant and pro-oxidant activities depends on several factors, including the specific carotenoid, its concentration and the redox environment of the cell. Clinical trials are discussed, highlighting the conflicting results of carotenoids in cancer treatment and the importance of personalized approaches. Emerging research on rare carotenoids like bacterioruberin showcases their superior antioxidant capacity and selective cytotoxicity against aggressive cancer subtypes, such as triple-negative breast cancer. Future directions include innovative delivery systems, novel combinations and personalized treatments, aiming to enhance the therapeutic potential of carotenoids. This review highlights the promising yet complex landscape of carotenoid-based cancer therapies, calling for continued research and clinical exploration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428676 | PMC |
http://dx.doi.org/10.3390/antiox13091060 | DOI Listing |
Photosynth Res
September 2025
College of Life Sciences, Shanghai Normal University, Shanghai, 200235, China.
Euglena sanguinea (Ehrenberg 1831) is one of the earliest reported species within the genus Euglena. Its prolific proliferation leading to red algal bloom has garnered significant scientific attention due to its ecological and environmental impacts. Despite this, research on E.
View Article and Find Full Text PDFArch Microbiol
September 2025
College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
Cystofilobasidium infirmominiatum, biotechnologically significant yeast, is increasingly garnering attention due to its superior ability to produce valuable carotenoids and lipids. Nonetheless, until now, the reference genome that governs the biosynthesis of carotenoids and lipids in C. infirmominiatum remains unreported.
View Article and Find Full Text PDFInt J Vitam Nutr Res
September 2025
Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, 300070 Tianjin, China.
Background: Retinol-binding protein 4 (RBP4) is a vitamin A transport protein synthesized in the liver and also plays a crucial role in inflammation and immune regulation. Low serum vitamin A levels have been observed in both pediatric and adult patients with ulcerative colitis (UC). The association between serum vitamin A levels and serum RBP4 levels, as well as the underlying mechanism involved inimpaired vitamin A transport during inflammation in UC patients, has yet to been investigated.
View Article and Find Full Text PDFFood Sci Biotechnol
October 2025
Department of Herbal Medicine, College of Pharmacy, Wonkwang University, 460 Iksandae-Ro, Iksan, Jeonbuk 54538 Republic of Korea.
Lycii fructus (LF) is widely used in traditional Asian medicine and as a dietary supplement due to its potential health benefits. Zeaxanthin (ZEA), a key carotenoid in LF, is crucial in supporting eye health. However, the effects of LF and ZEA on receptor activator of NF-kappaB Ligand (RANKL)-mediated osteoclast differentiation were not confirmed.
View Article and Find Full Text PDF, commonly known as sweet potato, is an increasingly valued functional food because of its vivid coloration and rich bioactive compounds, especially anthocyanins and carotenoids, such as ipomoeaxanthin. This review focuses on the bioavailability, mechanisms of action, and therapeutic potential of sweet potato-derived anthocyanins in diabetes and metabolic disorders. Anthocyanins, which are plant pigments, exhibit high antioxidant activity by scavenging free radicals and stimulating endogenous antioxidant enzymes such as catalase and superoxide dismutase, thereby protecting cellular structures from damage and reducing oxidative damage in vital metabolic organs such as the pancreas, liver, brain, and muscles.
View Article and Find Full Text PDF