Induction of human stem cells into ameloblasts by reaggregation strategy.

Stem Cell Res Ther

Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, P.R. China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Human epithelium-derived stem cells and induced pluripotent stem cells (hiPSCs) possess the capability to support tooth formation and differentiate into functional enamel-secreting ameloblasts, making them promising epithelial-component substitutes for future human tooth regeneration. However, current tissue recombination approaches are not only technically challenging, requiring precise induction procedures and sophisticated microsurgery, but also exhibit low success rates in achieving tooth formation and ameloblastic differentiation.

Methods: Suspended human keratinocyte stem cells (hKSCs) or cells from three hiPSC lines were directly mixed with dissociated embryonic mouse dental mesenchymal cells (mDMCs) that possess odontogenic potential in different proportions and reaggregated them to construct bioengineered tooth germs. The success rates of tooth formation and ameloblastic differentiation were confirmed after subrenal culture. The sorting capability, sequential development, and ameloblastic differentiation of stem cells were examined via GFP tracing, RT-PCR, and histological analysis, respectively.

Results: Our reaggregation approach achieved an impressive success rate of more than 90% in tooth formation and 100% in ameloblastic differentiation when the chimeric tooth germs contained 1%~10% hKSCs or 5% hiPSCs. In addition, we observed that hiPSCs, upon exposure to mDMCs, initially transformed into epidermal cells, as indicated by KRT14 and CD29 expression, before progressing into dental epithelial cells, as indicated by SP6 and SHH expression. We also found that epithelial-derived hiPSCs, when reaggregated with mDMCs, were more favorable for tooth formation than their mesenchymal-derived counterparts.

Conclusions: This study establishes a simplified yet highly effective cell-cell reaggregation strategy for inducing stem cells to support tooth formation and differentiate into functional ameloblasts, paving the way for novel approaches for the development of stem cell-based tooth organoids and bioengineered tooth germs in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437913PMC
http://dx.doi.org/10.1186/s13287-024-03948-1DOI Listing

Publication Analysis

Top Keywords

stem cells
24
tooth formation
24
tooth germs
12
ameloblastic differentiation
12
tooth
11
cells
10
reaggregation strategy
8
support tooth
8
formation differentiate
8
differentiate functional
8

Similar Publications

Protocol for constructing an accessible exposure chamber for in vitro and in vivo modeling of airway environmental exposures.

STAR Protoc

September 2025

UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; UCLA Environmental and Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA

Exposure systems to study the effects of environmental exposures can be costly to purchase and difficult to use. Here, we present an accessible and cost-effective approach to building an exposure chamber in the lab. We describe steps for constructing the exposure system and writing the code to run it and simple instructions for experiments using the system.

View Article and Find Full Text PDF

Recessive TMEM167A variants cause neonatal diabetes, microcephaly and epilepsy syndrome.

J Clin Invest

September 2025

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.

Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF