Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: GlcNAc2-epimerase (GNE) myopathy is a rare autosomal recessive disorder caused by pathogenic variants in the gene, which is essential for the sialic acid biosynthesis pathway.

Objective: This multi-centre study aimed to delineate the clinical phenotype and variant spectrum in Chinese patients, enhancing our understanding of the genetic diversity and clinical manifestation across different populations.

Methods: We retrospectively analysed variants from 113 patients, integrating these data with external variants from online databases for a global perspective, examining their consequences, distribution, ethnicity and severity.

Results: This study revealed 97 distinct variants, including 35 (36.08%) novel variants. Two more patients with deep intronic variant c.862+870C>T were identified, while whole genome sequencing (WGS) uncovered another two novel intronic variants: c.52-8924G>T and c.1505-12G>A. Nanopore long reads sequencing (LRS) and further PCR analysis verified a 639 bp insertion at chr9:36249241. Missense variants predominantly located in the epimerase/kinase domain coding region, indicating the impairment of catalytic function as a key pathogenic consequence. Comparative studies with Japanese, Korean and Jewish, our cohorts showed later onset ages by 2 years. The high allele frequency of the non-catalytic variant, c.620A>T, might underlie the milder phenotype of Chinese patients.

Conclusions: Comprehensive techniques such as WGS and Nanopore LRS warrants the identifying of variants. Patients with the non-catalytic variant, c.620A>T, had a milder disease progression and later wheelchair use.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmg-2024-110149DOI Listing

Publication Analysis

Top Keywords

novel variants
8
gne myopathy
8
variants
8
variants patients
8
non-catalytic variant
8
variant c620a>t
8
variants genotype-phenotype
4
genotype-phenotype correlation
4
correlation multicentre
4
multicentre cohort
4

Similar Publications

Recessive TMEM167A variants cause neonatal diabetes, microcephaly and epilepsy syndrome.

J Clin Invest

September 2025

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.

Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.

View Article and Find Full Text PDF

The spindle cell variant of papillary thyroid carcinoma (PTC) is exceptionally rare and poses significant diagnostic challenges due to its morphological overlap with other spindle cell lesions of the thyroid. We report a novel case of spindle cell variant PTC in a 66-year-old woman presenting with a TI-RADS 4 thyroid nodule, initially classified as Bethesda III on fine-needle aspiration. Histopathological examination revealed a biphasic tumor composed predominantly of bland spindle cells arranged in solid sheets and fascicles, admixed with entrapped thyroid follicles.

View Article and Find Full Text PDF

Background: Tachycardia-induced cardiomyopathy (TICM) is typically reversible with rhythm control, but individual susceptibility remains poorly understood and may reflect genetic predisposition.

Case Summary: A 66-year-old woman with paroxysmal atrial fibrillation (AF) presented with new-onset heart failure. Genetic testing identified a likely pathogenic heterozygous ABCC9 gene variant (c.

View Article and Find Full Text PDF

Novel Grm6 Variant in a no b-wave (nob) Mouse Model: Phenotype Characterization and Gene Therapy.

Invest Ophthalmol Vis Sci

September 2025

Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, New York, United States.

Purpose: To characterize a no b-wave (nob) mouse model of congenital stationary night blindness (CSNB) caused by a Grm6 variant that disrupts photoreceptor-to-bipolar cell signaling. Additionally, we aim to evaluate the efficacy of gene therapy in restoring visual function.

Methods: The nob mouse was generated through selective breeding to regenerate the nob phenotype.

View Article and Find Full Text PDF

Purpose: To define the genetic architecture of foveal morphology and explore its relevance to foveal hypoplasia (FH), a hallmark of developmental macular disorders.

Methods: We applied deep-learning algorithms to quantify foveal pit depth from central optical coherence tomography (OCT) B-scans in 61,269 UK Biobank participants. A genome-wide association study (GWAS) was conducted using REGENIE, adjusting for age, sex, height, and ancestry.

View Article and Find Full Text PDF