Plant Root Secretion Alleviates Carbamate-Induced Molecular Alterations of Dissolved Organic Matter.

Toxics

Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Studying the interaction between pesticide contamination in the plant system and the dissolved organic matter (DOM) composition is important to understand the impact of pesticides and plants on the ecological function of DOM. The present study investigated the effects of DOM on the bioaccumulation and biotransformation of carbamates in plants, carbamate exposure on DOM composition, and plant root secretion on the interaction between DOM and carbamates. The concentrations of carbamates and their metabolites in living cabbage plants were continuously tracked through an in vivo analytical method. The presence of DOM was found to reduce the highest bioconcentrations and shorten the time it took to reach the highest bioaccumulated amounts of isoprocarb and carbofuran in plants, while it showed no significant effect on the uptake behavior of carbaryl. DOM profiling results indicated that carbamate exposure substantially decreased the number and molecular diversity of DOM. Notably, plant root secretion alleviated carbamate-induced DOM molecular alterations by inducing a higher turnover rate of DOM compared to that in the uncontaminated group, highlighting the role of plants in mitigating the effects of exogenous pesticide exposure on DOM composition and maintaining DOM molecular homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435816PMC
http://dx.doi.org/10.3390/toxics12090654DOI Listing

Publication Analysis

Top Keywords

plant root
12
root secretion
12
dom
12
dom composition
12
molecular alterations
8
dissolved organic
8
organic matter
8
carbamate exposure
8
exposure dom
8
dom molecular
8

Similar Publications

The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.

View Article and Find Full Text PDF

Snow is an important insulator of Arctic soils during winter and may be a source of soil moisture in summer. Changes in snow depth are likely to affect fine root growth and mortality via changes in soil temperature, moisture, and/or nutrient availability, which could alter aboveground growth and reproduction of Arctic vegetation. We explored fine root dynamics at three contrasting treelines in northwest Alaska.

View Article and Find Full Text PDF

This review discusses the research progress of regulating tree dwarfing in fruit tree rootstocks, including its definition, manifestation, mechanism and application of different rootstocks. Studies indicate that dwarfing rootstocks reduce vegetative growth while promoting reproductive growth. Compared with vigorous rootstocks, the contents of indole-3-acetic acid, cytokinin, and gibberellin in leaves is lower, while the content of abscisic acid is higher.

View Article and Find Full Text PDF

The increasing presence of nanoplastics (NPs) in terrestrial environments raises concerns about their bioavailability and potential impacts on crops. This study investigates the uptake and translocation of environmentally relevant polystyrene nanoplastics (eNPs-PS) in Hordeum vulgare L. via soil.

View Article and Find Full Text PDF

Chlorine dioxide (ClO) has been emerging as an alternative to chlorine for disinfection due to the lower formation of regulated organic disinfection byproducts (DBPs). This pilot-scale study investigated the impacts of ClO pre-oxidation and delayed chlorination on regulated and unregulated DBPs. These included trihalomethanes (THMs), haloacetic acids (HAAs), halonitromethanes (HNMs), chloral hydrate, chlorite, and chlorate.

View Article and Find Full Text PDF