98%
921
2 minutes
20
Airborne microbes are affected by natural environmental factors and have become a global issue due to their potential threat to human health. To explore the effects of altitude on the communities of microbes and potential pathogenic bacteria, we sampled airborne microbes and soils at sites with different altitudes in Shigatse of Xizang. The results showed a significant difference in bacterial communities between air and soil and a decrease in the contribution of soil to airborne bacteria from the sites with a lower altitude to the sites with a higher altitude. The Chao1 indexes of airborne bacteria were significantly higher in the sites with a lower altitude compared to those with a higher altitude, and the bacterial Bray-Curtis distances between sites with a lower altitude were significantly lower than those between sites with a lower altitude and high altitude. These results indicated that altitude would affect the community patterns of airborne bacteria, and the transport of air would decrease the variations in airborne microbial communities between different sites. Proteobacteria, with 84%-91% of average abundance, predominated in the airborne bacterial communities, but different taxa were enriched in sites with different altitudes. For example, the genera of and were enriched in sites with a lower altitude and a higher altitude, respectively. A total of 78 potential bacterial pathogens were detected across all samples, and the relative abundance of them in bacterial communities ranged from 2.69% to 38.19%. These findings indicated that altitude would affect the community compositions of airborne bacteria and potential pathogenic bacteria and suggested the potential threat of airborne bacteria to human health. This study provided a scientific basis for better understanding the distributions of airborne microbes and for air quality improvement and disease prevention in China.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202309061 | DOI Listing |
ACS Nano
September 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.
Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.
View Article and Find Full Text PDFAnn Work Expo Health
September 2025
Laboratoire de Métrologie des Aérosols, INRS, 54519 Vandœuvre-lès-Nancy Cedex, France.
Endotoxins are components of the outer membrane of bacteria that can become airborne during aerosol-generating work activities and cause adverse effects on workers' health. Filtration is the sampling method recommended by the EN 14031 standard for endotoxin measurements in workplace atmospheres. However, there are still differences in terms of practice regarding certain parameters of the measurement method.
View Article and Find Full Text PDFFungal Biol
October 2025
Faculty of Biology and Nature Protection, University of Rzeszów, Zelwerowicza 4, 35 - 601, Rzeszów, Poland. Electronic address:
The qualitative and quantitative composition of airborne fungal spores results from the interaction of fungal biology, environmental factors, particularly climate, weather conditions, vegetation, land cover and human activity. Continuous aeromycological monitoring is rarely conducted due to the challenges associated with identifying the abundance of spores present in the air. In southeastern Poland such studies have been conducted only occasionally.
View Article and Find Full Text PDFSci Total Environ
September 2025
Human Foods Program, U.S. Food and Drug Administration, College Park, MD, USA.
Cattle are a reservoir for the zoonotic human foodborne pathogen Shiga toxin-producing Escherichia coli (STEC), the causative agent of many disease outbreaks associated with contaminated fresh leafy greens. Concentrated animal feeding operations (CAFOs) housing cattle generate fugitive dust, however the potential risk of STEC movement by means of the aerosolized dust is not well known. In this investigation, we used metagenome sequencing of air samples collected in an agricultural setting to investigate airborne transfer of STEC from a large CAFO to the surrounding area.
View Article and Find Full Text PDFTravel Med Infect Dis
September 2025
Infectious and Tropical Diseases Unit, Azienda Ospedale Università Padova, 35128, Padua, Italy; Department of Molecular Medicine, University of Padova, 35128, Padua, Italy.
Background: Outside of classic endemic areas, histoplasmosis has gained attention due to an increased incidence in immunocompetent travellers, attributable to changes in behaviours during travel.
Methods: A cluster of five patients who presented with acute pulmonary histoplasmosis after travelling to the Ecuadorian Amazon Region is described in this article.
Results: Five patients (four females and one male), all in their 20s, presented with acute pulmonary histoplasmosis between sixteen and twenty-three days after the potential airborne exposure after travelling to the Ecuadorian Amazon Region.