Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigates the catalytic effects of external electric fields (EEFs) on two reactions in solution: the Menshutkin reaction and the Chapman rearrangement. Utilizing a scanning tunneling microscope-based break-junction (STM-BJ) setup and monitoring reaction rates through high-performance liquid chromatography connected to a UV detector (HPLC-UV) and ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-q-ToF-MS), we observed no rate enhancement for either reaction under ambient conditions. Density functional theory (DFT) calculations indicate that electric field-induced changes in reactant orientation and the minimization of activation energy are crucial factors in determining the efficacy of EEF-driven catalysis. Our findings suggest that the current experimental setups and field strengths are insufficient to catalyze these reactions, underscoring the importance of these criteria in assessing the reaction candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.4c04864DOI Listing

Publication Analysis

Top Keywords

external electric
8
electric fields
8
reactions solution
8
liquid chromatography
8
evaluating ability
4
ability external
4
fields accelerate
4
accelerate reactions
4
solution study
4
study investigates
4

Similar Publications

The development of innovative bioprocessing technologies has resulted from the growing global need for sustainable forms of energy and environmentally friendly waste treatment. In this review, we focus on the combined electro-fermentation and microbial fuel cells, as they form a hybrid system that simultaneously addresses wastewater treatment, bioenergy production, and bioplastics. Even though microbial fuel cells produce electricity out of the organic waste by the use of electroactive microorganisms, electro-fermentation improves the microbial pathways through the external electrochemical management.

View Article and Find Full Text PDF

A new whole-body exposure facility for a randomized, double-blind, cross-over provocation study investigating possible effects of 50 Hz magnetic field exposure on sleep and markers of Alzheimer's disease has been developed and dosimetrically analyzed. The exposure facility was custom-tailored for the sleep laboratory where the study was carried out and enables magnetic flux densities of up to 30 μT with a maximum field inhomogeneity of less than ± 20%. Exposure is applied fully software-controlled and in a blinded and randomized manner.

View Article and Find Full Text PDF

Magnetic Implantable Devices and Materials for the Brain.

Small Methods

September 2025

Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.

Understanding the brain's complexity and developing treatments for its disorders necessitates advanced neural technologies. Magnetic fields can deeply penetrate biological tissues-including bone and air-without significant attenuation, offering a compelling approach for wireless, bidirectional neural interfacing. This review explores the rapidly advancing field of magnetic implantable devices and materials designed for modulation and sensing of the brain.

View Article and Find Full Text PDF

Electric Field Influences on the Carrier Transport Characteristics of an Individual CsPbBr Microplate.

ACS Appl Mater Interfaces

September 2025

National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

For optoelectronic devices based on lead-halide perovskites and other semiconductors, a comprehensive understanding of the electric field influences on the carrier transport characteristics is critical to the optimization of their practical performances. To fulfill this challenging goal, here we have employed photoluminescence spatial image and transient absorption microscopy measurements on an individual CsPbBr microplate biased at external voltages in an Au/CsPbBr/Au device. At the subpicosecond time scale, some photogenerated excitons are dissociated into free electrons and holes that drift toward the electrodes to leave behind unfilled defect sites, which are capable of scattering the residual excitons to yield a reduced diffusion coefficient.

View Article and Find Full Text PDF

Gel-based electronic skin (e-skin) has recently emerged as one of the most promising interfaces for human-machine interaction and wearable devices, owing to its exceptional flexibility, extensibility, transparency, biocompatibility, high-quality physiological signal monitoring, and system integration suitability. However, conventional hydrogel-based e-skins may exhibit limitations in mechanical strength and stretchability compatibility, as well as poor environmental stability. To address these challenges, following a top-down fabrication strategy, this study innovatively integrates poly(methacrylic acid), titanium sulfate, and ethylene glycol (EG) into the three-dimensional collagen fiber network structure of zeolite-tanned sheepskin to successfully develop an organogel (SMEMT) e-skin, which exhibits superior high toughness, environmental stability, high transparency (74% light transmittance at 550 nm), antibacterial properties and ecological compatibility.

View Article and Find Full Text PDF