Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It remains unclear whether feedback from group III/IV muscle afferents is of continuous significance for regulating the pulmonary response during prolonged (>5 min), steady-state exercise. To elucidate the influence of these sensory neurons on hyperpnoea, gas exchange efficiency, arterial oxygenation and acid-base balance during prolonged locomotor exercise, 13 healthy participants (4 females; 21 (3) years, : 46 (8) ml/kg/min) performed consecutive constant-load cycling bouts at ∼50% (20 min), ∼75% (20 min) and ∼100% (5 min) of with intact (CTRL) and pharmacologically attenuated (lumbar intrathecal fentanyl; FENT) group III/IV muscle afferent feedback from the legs. Pulmonary responses were continuously recorded and arterial blood (radial catheter) periodically collected throughout the exercise. Pulmonary gas exchange efficiency was evaluated using the alveolar-arterial difference ( ). There were no differences in any of the variables of interest between conditions before the start of the exercise. Pulmonary ventilation was up to 20% lower across all intensities during FENT compared to CTRL exercise (P < 0.001) and this hypoventilation was accompanied by an up to 10% lower arterial and a 2-4 mmHg higher (both P < 0.001). The exercise-induced widening of was up to 25% larger during FENT compared to CTRL (P < 0.001). Importantly, the differences developed within the first minute of each stage and persisted, or further increased, throughout the remainder of each bout. These findings reflect a critical and time-independent significance of feedback from group III/IV leg muscle afferents for continuously regulating the ventilatory response, gas exchange efficiency, arterial oxygenation and acid-base balance during human locomotion. KEY POINTS: Feedback from group III/IV leg muscle afferents reflexly contributes to hyperpnoea during short duration (i.e. <5 min) locomotor exercise. Whether continuous feedback from these sensory neurons is obligatory to ensure adequate pulmonary responses during steady-state exercise of longer duration remains unknown. Lumbar intrathecal fentanyl was used to attenuate the central projection of group III/IV leg muscle afferents during prolonged locomotor exercise (i.e. 45 min) at intensities ranging from 50% to 100% of . Without affecting the metabolic rate, afferent blockade compromised pulmonary ventilation and gas exchange efficiency, consistently impairing arterial oxygenation and facilitating respiratory acidosis throughout exercise. These findings reflect the time-independent significance of feedback from group III/IV muscle afferents for regulating exercise hyperpnoea and gas exchange efficiency, and thus for optimizing arterial oxygenation and acid-base balance, during prolonged human locomotion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493515PMC
http://dx.doi.org/10.1113/JP286993DOI Listing

Publication Analysis

Top Keywords

gas exchange
12
group iii/iv
12
iii/iv muscle
12
pulmonary gas
8
muscle afferent
8
afferent feedback
8
exchange efficiency
8
exercise pulmonary
8
exercise
6
pulmonary
5

Similar Publications

3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.

View Article and Find Full Text PDF

Drought has a major impact on crop yields. Silicon (Si) application has been proposed to improve drought resilience via several mechanisms including modifying the level of stomatal gas exchange. However, the impact of Si on transpiration and stomatal conductance varies between studies.

View Article and Find Full Text PDF

Traditional studies of pulmonary fibrosis (PF) have focused on alveolar epithelial cells injury and abnormal myofibroblast aggregation, but recent studies have revealed that imbalances in pulmonary capillary homeostasis also play pivotal roles in this disease. The pulmonary microvasculature, composed of aerocyte capillary (aCap) and general capillary (gCap) endothelial cells, forms the core structure of the alveolar-capillary membrane. It performs key roles in gas exchange and nutrient/metabolite transport, while modulating the trafficking of inflammatory factors and immune cells and regulating alveolar damage repair.

View Article and Find Full Text PDF

Background: Stroke is a common acute cerebrovascular disease, and rehabilitation therapy plays a crucial role in the recovery of stroke patients.

Methods: In this retrospective study, we first enrolled 80 stroke patients. These participants were then randomly divided into two groups: the treatment group underwent finger acupressure combined with lower limb rehabilitation training machine, and the control group received basic rehabilitation therapy.

View Article and Find Full Text PDF

Coronary artery bypass grafting (CABG) is a common surgical approach for advanced coronary artery disease unresponsive to conservative or percutaneous treatments. Despite its benefits in symptom relief and long-term outcomes, CABG is associated with notable postoperative respiratory complications. As such, respiratory physiotherapy plays a crucial role in recovery.

View Article and Find Full Text PDF