Cellulose nanomaterial metrology: microscopy measurements.

Nanoscale

Metrology Research Center, National Research Council Canada, Ottawa, ON, Canada K1A 0R6.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cellulose nanomaterials are increasingly used for a wide variety of applications. Adequate characterization of these materials is required for quality control during production, to distinguish between materials synthesized by different methods, by different suppliers or from difference cellulose biomass sources, to facilitate development of applications and for regulatory purposes. Here we review recent microscopy measurements for the three main types of cellulose nanomaterials: cellulose nanocrystals, individual cellulose nanofibrils and cellulose nanofibrils. Atomic force microscopy and both scanning and transmission electron microscopy are covered with a focus on recent studies that have metrological rigor, rather than qualitative investigations. In some cases results are compared to those obtained by other methods that are more likely to see widespread use for routine quality control measurements. Detailed studies that use microscopy to provide insight on fundamental material properties (, chiral properties) are also included. Particle size and morphology are important properties but are challenging to measure for cellulose nanomaterials due to the rod or fibril shaped particles, their propensity to agglomerate and aggregate, their low contrast for electron microscopy and, for cellulose nanofibrils, the complex branched and interconnected structures. Overall, the results show that there are now a number of studies in which attention to metrological detail has resulted in measurements that allow one to compare and distinguish between different materials, although there are still examples for which it is not possible to draw conclusions on size differences. The use of detailed microscopy protocols that yield accurate and reliable results will be beneficial in material production and addressing regulatory requirements and will allow the validation of other methods that are more amenable to routine measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr02276aDOI Listing

Publication Analysis

Top Keywords

cellulose nanomaterials
12
cellulose nanofibrils
12
cellulose
9
microscopy measurements
8
quality control
8
distinguish materials
8
electron microscopy
8
microscopy
7
measurements
5
cellulose nanomaterial
4

Similar Publications

Lignin-Based Functional Materials.

Biomacromolecules

September 2025

Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, Stockholm 10044, Sweden.

Lignin, traditionally considered a low-value byproduct of the pulp and paper industry, has gained significant attention in recent years as a sustainable precursor for the development of functional materials. This paradigm shift is driven by recent studies exploring the structure-property-performance relationships of lignin-based functional materials, which have provided valuable insights for selective chemical functionalization or pretreatment of lignin. Furthermore, the use of complementary analytical techniques has helped to shed light into lignin's complex and heterogeneous structure, opening new avenues for chemical modification.

View Article and Find Full Text PDF

Supramolecular engineering of high-efficiency nanozymes via chain-length-directed crystallization of cellulose oligomers.

J Colloid Interface Sci

September 2025

School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China. Electronic address:

Nanozymes are nanomaterials designed to mimic the catalytic functions of natural enzymes, offering advantages such as enhanced stability, tunability, and scalability. Although precise control over the spatial arrangement of catalytic centers is essential for maximizing nanozyme activity, it remains a fundamental challenge in nanozyme design. Here, we present a supramolecular strategy to achieve molecular-level engineering of catalytic centers by grafting hemin onto monodisperse cellulose oligomers (MCOs).

View Article and Find Full Text PDF

Surface engineering of cellulose microspheres via amyloid-like protein aggregation for bilirubin removal.

Carbohydr Polym

November 2025

College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China. Electronic address:

Hemoperfusion is one of the most effective blood purification techniques to quickly remove bilirubin from the blood of patients with kidney or liver failure. Although numerous adsorbent materials with high adsorption capacity have been developed, their clinical application are still limited due to poor biocompatibility and biosafety issues. Herein, biocompatible core-shell structured adsorbents with cellulose microspheres (CMs) as the supporting core and phase-transformed lysozyme (PTL) as the functional shell are fabricated for the removal of bilirubin in hemoperfusion.

View Article and Find Full Text PDF

Chitin nanocrystal/carboxymethyl cellulose bilayer emulsion with rigid inner layer and flexible outer shell for ultra-stable encapsulation of fish oil.

Carbohydr Polym

November 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan 430068, China. Electronic address:

The polyunsaturated fatty acids in fish oil are prone to oxidation and have poor dispersibility, which limits their use in the food sector. In this work, oil-in-water emulsions stabilized by chitin nanocrystals (ChNC) were prepared via high-speed homogenization. Anionic carboxymethyl cellulose (CMC) was assembled onto cationic ChNC-stabilized emulsion droplet surfaces via layer-by-layer self-assembly technology to construct ChNC/CMC (Ch-C) bilayer emulsions with rigid inner layer and flexible outer shell structures.

View Article and Find Full Text PDF

Leveraging topological reactivity of cellulose nanocrystals with allomorph II (CNC-II) to create temperature-sensitive systems for ibuprofen delivery.

Carbohydr Polym

November 2025

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Cellulose nanocrystals (CNCs) have garnered attention for their renewable and reactive nature, yet CNC allomorph II (CNC-II) remains underexplored compared to the extensively studied CNC-I. This study bridges this gap by introducing a two-step carboxylamine condensation strategy to conjugate poly(ethylene glycol) (PEG) onto CNC-II via ethylenediamine, leveraging the high topochemical reactivity of CNC-II. Utilizing bicarboxylate-capped PEG as a probe, quartz crystal microbalance with energy dissipation (QCM-D) assays revealed a significant reactivity increase of 16.

View Article and Find Full Text PDF