Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The effectiveness of mRNA vaccines largely depends on their lipid nanoparticle (LNP) component. Herein, we investigate the effectiveness of DLin-KC2-DMA (KC2) and SM-102-based LNPs for the intramuscular delivery of a plasmid encoding B.1.617.2 (Delta) spike fused with CD40 ligand. LNP encapsulation of this CD40L-adjuvanted DNA vaccine with either LNP formulation drastically enhanced antibody responses, enabling neutralization of heterologous Omicron variants. The DNA-LNP formulations provided excellent protection from homologous challenge, reducing viral replication, and preventing histopathological changes in the pulmonary tissues. Moreover, the DNA-LNP vaccines maintained a high level of protection against heterologous Omicron BA.5 challenge despite a reduced neutralizing response. In addition, we observed that DNA-LNP vaccination led to the pulmonary downregulation of interferon signaling, interleukin-12 signaling, and macrophage response pathways following SARS-CoV-2 challenge, shedding some light on the mechanisms underlying the prevention of pulmonary injury. These results highlight the potential combination of molecular adjuvants with LNP-based vaccine delivery to induce greater and broader immune responses capable of preventing inflammatory damage and protecting against emerging variants. These findings could be informative for the future design of both DNA and mRNA vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416279PMC
http://dx.doi.org/10.1016/j.omtm.2024.101325DOI Listing

Publication Analysis

Top Keywords

lipid nanoparticle
8
dna vaccine
8
mrna vaccines
8
heterologous omicron
8
nanoparticle encapsulation
4
encapsulation delta
4
delta spike-cd40l
4
spike-cd40l dna
4
vaccine improves
4
improves effectiveness
4

Similar Publications

Hydrodynamic focusing to synthesize lipid-based nanoparticles: Computational and experimental analysis of chip design and formulation parameters.

J Control Release

September 2025

Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M

Microfluidic hydrodynamic focusing (HF) has emerged as a powerful platform for the controlled synthesis of lipid nanoparticles (LNPs) and liposomes, offering superior precision, reproducibility, and scalability compared to traditional batch methods. However, the impact of HF inlet configuration and channel geometry on nanoparticle formation remains poorly understood. In this study, we present a comprehensive experimental and computational analysis comparing 2-inlet (2-way) and 4-inlet (4-way) HF designs across various sheath inlet angles (45°, 90°, 135°) and cross-sectional geometries (square vs.

View Article and Find Full Text PDF

Pulmonary delivery of small circular RNA vaccines for influenza prevention.

J Control Release

September 2025

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA; Bioinnovations in Brain Cancer, Biointerfaces Institute; The Developmental Therapeutics Program, Rogel Cancer Center; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109,

Lipid nanoparticles (LNPs) have played an instrumental role in the delivery of RNA therapeutics and vaccines, including the emerging class of synthetic circular RNA (circRNA). Pulmonary vaccines hold the potential to prevent various respiratory infectious diseases, such as influenza caused by influenza infection. Here, we report the pulmonary delivery of LNPs loaded with highly stable small circRNA vaccine for influenza prevention.

View Article and Find Full Text PDF

Investigating the functional contributions of phospholipids in selective organ targeting lipid nanoparticles.

Biomaterials

September 2025

Department of Biomedical Engineering, Program in Genetic Drug Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. Electronic address:

Modular lipid nanoparticles (LNPs) are a promising platform to deliver mRNA to various tissues and cells. Optimization of LNPs for hepatic and extrahepatic tissues often involves substitution of helper lipids or addition of novel lipids not found in conventional four-component LNPs. Among the lipids that comprise LNPs, the functional contributions of phospholipids (PLs) in selective organ targeting (SORT) LNPs remain poorly understood.

View Article and Find Full Text PDF

Schizophrenia is a persistent and incapacitating neuropsychiatric condition that presents considerable obstacles regarding pharmacological administration and therapeutic effectiveness. Lipidic nanocarriers, including Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), have emerged as effective drug delivery vehicles for enhancing the bioavailability, stability, and controlled release of antipsychotic medicines. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have several benefits, such as improved drug loading capacity, less systemic adverse effects, and superior efficacy in traversing the blood-brain barrier compared to conventional formulations.

View Article and Find Full Text PDF

Systemic Delivery of an mRNA-Encoding, Tumor-Activated Interleukin-12 Lock to Eliminate Tumors and Avoid Immune-Related Adverse Events.

Nano Lett

September 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.

Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.

View Article and Find Full Text PDF