Age-dependent genetic architectures of chicken body weight explored by multidimensional GWAS and molQTL analyses.

J Genet Genomics

State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China. Electronic address:

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chicken body weight (BW) is a critical trait in breeding. Although genetic variants associated with BW have been investigated by genome-wide association studies (GWAS), the contributions of causal variants and their molecular mechanisms remain largely unclear in chickens. In this study, we construct a comprehensive genetic atlas of chicken BW by integrative analysis of 30 age points and 5 quantitative trait loci (QTL) across 27 tissues. We find that chicken growth is a cumulative non-linear process, which can be divided into three distinct stages. Our GWAS analysis reveals that BW-related genetic variations show ordered patterns in these three stages. Genetic variations in chromosome 1 may regulate the overall growth process, likely by modulating the hypothalamus-specific expression of SLC25A30 and retina-specific expression of NEK3. Moreover, genetic variations in chromosome 4 and chromosome 27 may play dominant roles in regulating BW during Stage 2 (8-22 weeks) and Stage 3 (23-72 weeks), respectively. In summary, our study presents a comprehensive genetic atlas regulating developmental stage-specific changes in chicken BW, thus providing important resources for genomic selection in breeding programs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jgg.2024.09.003DOI Listing

Publication Analysis

Top Keywords

genetic variations
12
chicken body
8
body weight
8
comprehensive genetic
8
genetic atlas
8
variations chromosome
8
genetic
6
chicken
5
age-dependent genetic
4
genetic architectures
4

Similar Publications

Population genetics plays a critical role in creating policies for managing fisheries, conservation, and development of aquaculture. The golden snapper, Lutjanus johnii (Bloch, 1792), is a highly commercial and aquaculture important snapper species. This study used mitochondrial markers D-loop (151 specimens) and Cytochrome b (Cyt-b, 120 specimens) from 10 populations, including populations from the east South China Sea, the west South China Sea and the Strait of Malacca to investigate the genetic diversity, population connectivity, and historical demography of L.

View Article and Find Full Text PDF

Background: Lung cancer (LC) is the leading cause of cancer-related deaths globally. Genetic variants in mismatch repair (MMR) genes, such as MutS homolog 2 (MSH2), MutS homolog 6 (MSH6) and MutL homolog 1 (MLH1), may influence individual susceptibility and clinical outcomes in LC.

Objective: This study investigated the associations of genetic polymorphisms in MSH2, MSH6, and MLH1 with susceptibility and survival outcomes in lung cancer patients in the Guangxi Zhuang population.

View Article and Find Full Text PDF

Background: Hearing loss (HL) is one of the most common congenital anomalies and is a complex etiologically diverse condition. Molecular genetic characterization of HL remains challenging owing to the high genetic heterogeneity. This study aimed to screen for potential disease-causing genetic variations in a cohort of Indian patients with congenital bilateral severe-to-profound sensorineural HL.

View Article and Find Full Text PDF

Direct Effects of Polyploidization on Floral Scent.

J Chem Ecol

September 2025

Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.

Polyploidy is an important driver of the evolution and diversification of flowering plants. Several studies have shown that established polyploids differ from diploids in floral morphological traits and that polyploidization directly affects these traits. However, for floral scent, which is key to many plant-pollinator interactions, only a few studies have quantified differences between established cytotypes, and the direct effects of polyploidization on floral scent are not yet known.

View Article and Find Full Text PDF

Genetic variants in HSP40 co-chaperones modulate ischemic heart disease risk.

Mol Biol Rep

September 2025

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, 305041, Russia.

Background: The chaperoning system, which is responsible for protein homeostasis, plays a significant role in cardiovascular diseases. Among molecular chaperones or heat shock proteins (HSPs), the HSP40 family, the main co-chaperone of HSP70, remains largely underexplored, especially in ischemic heart disease (IHD) risk.

Materials And Results: We genotyped 834 IHD patients and 1,328 healthy controls for three SNPs (rs2034598 and rs7189628 DNAJA2 and rs4926222 DNAJB1) using probe-based real-time PCR.

View Article and Find Full Text PDF