98%
921
2 minutes
20
Antidepressant drugs promote neuronal plasticity, and activation of brain-derived neurotrophic factor (BDNF) signaling through its receptor neuronal receptor tyrosine kinase 2 (NTRK2 or TRKB) is among the critical steps in this process. These mechanisms are shared by typical slow-acting antidepressants, fast-acting ketamine, and psychedelic compounds, although the cellular targets of each drug differ. In this opinion article, we propose that some of these antidepressants may directly bind to TRKB and allosterically potentiate BDNF signaling, among other possible effects. TRKB activation in parvalbumin-containing interneurons disinhibits cortical networks and reactivates a juvenile-like plasticity window. Subsequent rewiring of aberrant networks, coupled with environmental stimuli, may underlie its clinical antidepressant effects. The end-to-end hypothesis proposed may stimulate the search for new treatment strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tins.2024.08.011 | DOI Listing |
Transl Neurosci
January 2025
Department of Anesthesia, The Second Affiliated Hospital of Xi'an JiaoTong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi, China.
Background: As a non-competitive blocker of the -methyl-d-aspartate receptor, ketamine is widely used for anesthesia and pain relief in clinical settings. However, certain neurological side effects may appear if it is used for the long term. According to clinical observations, anesthetic doses of ketamine trigger postoperative neurocognitive dysfunction in elderly patients, while subanesthetic doses of ketamine suppress the postoperative neuronal pyroptosis in the hippocampus, ameliorating the cognitive function.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, Republic of Korea.
Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Department of Encephalopathy, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
Objectives: To exple the mechanism of Granules (QXZG) for enhancing synaptic plasticity in aging rats.
Methods: Forty SD rats were randomized into control group, aging model group, donepezil treatment group, and QXZG treatment group (=10). Except for the control rats, all the rats were subjected to daily intraperitoneal injection of D-galactose for 8 consecutive weeks to induce brain aging, and donepezil hydrochloride and QXZG suspension were administered by gavage during modeling.
Int Immunopharmacol
September 2025
Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, #1055 Sanxiang Road, Suzhou 215004, Jiangsu, China. Electronic address:
β-Glucan, a polysaccharide from Saccharomyces cerevisiae with immunomodulatory activities that may not trigger pro-inflammatory responses in microglia, has been reported to show rapid antidepressant effects in chronically stressed animals by restoring microglial function in the dentate gyrus. However, the mechanisms underlying this effect of β-glucan are still largely unclear. Considering the importance of astrocytic purinergic 2Y1 receptors (P2Y1Rs) and brain-derived neurotrophic factor (BDNF) in the antidepressant effects of microglial stimulation, we hypothesize that β-glucan produces antidepressant effects by mobilizing astrocytic P2Y1R-triggered BDNF signaling in the hippocampus.
View Article and Find Full Text PDFCell Signal
September 2025
Department of Anesthesiology and Operation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China. Electronic address:
Repeated exposure to gestational general anesthesia during pregnancy has been associated with neurodevelopmental damage and cognitive and social dysfunction in offspring. This study investigates the underlying mechanisms and therapeutic strategies for mitigating these effects. Behavioral tests revealed significant impairments in cognitive, social, and spatial learning abilities in the offspring of general anesthesia-treated mice, alongside delayed eye-opening, reduced body weight, and neuronal damage.
View Article and Find Full Text PDF