98%
921
2 minutes
20
Background: Viral diseases of sweet potatoes are causing severe crop losses worldwide. More than 30 viruses have been identified to infect sweet potatoes among which the sweet potato latent virus (SPLV), sweet potato mild speckling virus (SPMSV), sweet potato virus G (SPVG) and sweet potato virus 2 (SPV2) have been recognized as distinct species of the genus Potyvirus in the family Potyviridae. The sweet potato virus 2 (SPV2) is a primary pathogen affecting sweet potato crops.
Methods: In this study, we detected an SPV2 isolate (named SPV2-LN) in Ipomoea nil in China. The complete genomic sequence of SPV2-LN was obtained using sequencing of small RNAs, RT-PCR, and RACE amplification. The codon usage, phylogeny, recombination analysis and selective pressure analysis were assessed on the SPV2-LN genome.
Results: The complete genome of SPV2-LN consisted of 10,606 nt (GenBank No. OR842902), encoding 3425 amino acids. There were 28 codons in the SPV2-LN genome with a relative synonymous codon usage (RSCU) value greater than 1, of which 21 end in A/U. Among the 12 proteins of SPV2, P3 and P3N-PIPO exhibited the highest variability in their amino acid sequences, while P1 was the most conserved, with an amino acid sequence identity of 87-95.3%. The phylogenetic analysis showed that 21 SPV2 isolates were clustered into four groups, and SPV2-LN was clustered together with isolate yu-17-47 (MK778808) in group IV. Recombination analysis indicated no major recombination sites in SPV2-LN. Selective pressure analysis showed d/d of the 12 proteins of SPV2 were less than 1, indicating that all were undergoing negative selection, except for P1N-PISPO.
Conclusion: This study identified a sweet potato virus, SPV2-LN, in Ipomoea nil. Sequence identities and genome analysis showed high similarity between our isolate and a Chinese isolate, yu-17-47, isolated from sweet potato. These results will provide a theoretical basis for understanding the genetic evolution and viral spread of SPV2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412058 | PMC |
http://dx.doi.org/10.1186/s12985-024-02500-0 | DOI Listing |
, commonly known as sweet potato, is an increasingly valued functional food because of its vivid coloration and rich bioactive compounds, especially anthocyanins and carotenoids, such as ipomoeaxanthin. This review focuses on the bioavailability, mechanisms of action, and therapeutic potential of sweet potato-derived anthocyanins in diabetes and metabolic disorders. Anthocyanins, which are plant pigments, exhibit high antioxidant activity by scavenging free radicals and stimulating endogenous antioxidant enzymes such as catalase and superoxide dismutase, thereby protecting cellular structures from damage and reducing oxidative damage in vital metabolic organs such as the pancreas, liver, brain, and muscles.
View Article and Find Full Text PDFMicrobes Environ
September 2025
Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University.
Sweet potato foot rot disease caused by Diaporthe destruens (formerly Plenodomus destruens) severely affects the yield and quality of sweet potatoes. To gain basic knowledge on regulating the pathogen using indigenous soil bacteria, the following organic materials were applied to potted soils collected from a sweet potato field contaminated with D. destruens: Kuroihitomi (compost made from shochu waste and chicken manure), Soil-fine (material made by adsorbing shochu waste on rice bran), and rice bran.
View Article and Find Full Text PDFEnhancing the branch density of starch through enzymatic modification is critical for improving its functional properties in various industrial applications. This study optimized the sequential enzymatic treatment of sweet potato starch using α-amylase (AA), β-amylase (BA), and transglucosidase (TG) to maximize the degree of branching (DB). Response Surface Methodology (RSM) was employed to evaluate the synergistic effects of enzyme concentrations and hydrolysis durations, identifying optimal conditions: AA (20.
View Article and Find Full Text PDFPLoS One
August 2025
Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, China.
Objective: This study aimed to investigate the impact of different energy levels and ingredient ratios on the nasogastric tube patency of pureed diets, optimizing the formulations to meet the nutritional requirements of elderly nasogastric feeding patients while minimizing tube blockage risk.
Methods: The study followed the guidelines of the "Chinese Resident's Balanced Diet Pyramid" and formulated five different energy levels of pureed diets (900 kcal, 1200 kcal, 1500 kcal, 1800 kcal, and 2100 kcal) using natural food groups. The diets consisted of seven major food categories: cereals and tubers, vegetables, meats, milk, oil, salt, and fruits.
Int J Biol Macromol
August 2025
Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China. Electronic address:
Sweet potato plays vital role in global food security, and is now facing serious threats posed abiotic stresses, including salinity, drought, heat, cold and biotic stresses including fungal, viral and pest attacks. Stress tolerance (ST) is a physiologically and genetically complex trait, and is conferred at various levels of sweet potato functional organization. As both the sustainability and profitability of sweet potato production systems are critically dependent on ST, researchers are trying to develop stress smart sweet potato capable of growing under stress environments.
View Article and Find Full Text PDF