98%
921
2 minutes
20
Echocardiography represents an essential tool for imagers and clinical cardiologists in the management of patients with heart failure. Advanced heart failure (AdHF) is a more severe and, typically, later stage of HF that exposes patients to a high risk of adverse outcomes, with a 1-year mortality rate of around 50%. Currently, several therapies are available to improve the outcomes of these patients, reduce their mortality rate, and, possibly, delay the need for advanced therapies such as heart transplant and long-term mechanical circulatory support. When accurately performed and interpreted, echocardiography provides crucial information to properly tailor medical and device therapy of patients with AdHF and to identify those at even higher risk. In this review, we present the state of the art of echocardiography applications in the clinical management of patients with AdHF. We will discuss the role of echocardiography chronologically, beginning with the prediction of AdHF, proceeding through diagnosis, and detailing how echocardiography informs clinical decision-making, before concluding with indications for advanced therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10741-024-10434-6 | DOI Listing |
J Palliat Care
September 2025
Department of Healthcare Administration and Policy, School of Public Health, University of Nevada, Las Vegas, NV, USA.
ObjectivesRecently, atrial fibrillation (AF) has contributed to an increase in cardiovascular deaths in the U.S. Palliative care (PC) and atrial ablation (AA) procedure can elevate quality of life of high-risk AF patients, who are associated with multiple comorbidities.
View Article and Find Full Text PDFPLoS One
September 2025
Biobank of Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Cardiology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, Fujian, China.
Introduction: Kidney stone disease is associated with numerous cardiovascular risk factors. However, the findings across studies are non-uniformly consistent, and the control of confounding variables remains suboptimal. This study aimed to investigate the association between kidney stone and cardiovascular disease.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2025
Division of Pediatric Critical Care, Department of Pediatrics, University of California, San Francisco, USA.
Right ventricular (RV) failure is the primary cause of death among patients with pulmonary arterial hypertension (PAH). Patients with congenital heart disease-associated PAH (CHD-PAH) demonstrate improved outcomes compared to patients with other forms of PAH, which is related to the maintenance of an adaptively hypertrophied RV. In an ovine model of CHD-PAH, we aimed to elucidate the cellular, microvascular, and transcriptional adaptations to congenital pressure overload that support RV function.
View Article and Find Full Text PDFJCI Insight
September 2025
Department of Pharmacology, University of Michigan, Ann Arbor, United States of America.
Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.
View Article and Find Full Text PDF