98%
921
2 minutes
20
Neural crest cells (NCC) are multipotent migratory stem cells that originate from the neural tube during early vertebrate embryogenesis. NCCs give rise to a variety of cell types within the developing organism, including neurons and glia of the sympathetic nervous system. It has been suggested that failure in correct NCC differentiation leads to several diseases, including neuroblastoma (NB). During normal NCC development, MYCN is transiently expressed to promote NCC migration, and its downregulation precedes neuronal differentiation. Overexpression of MYCN has been linked to high-risk and aggressive NB progression. For this reason, understanding the effect overexpression of this oncogene has on the development of NCC-derived sympathoadrenal progenitors (SAP), which later give rise to sympathetic nerves, will help elucidate the developmental mechanisms that may prime the onset of NB. Here, we found that overexpressing human EGFP-MYCN within SAP lineage cells in zebrafish led to the transient formation of an abnormal SAP population, which displayed expanded and elevated expression of NCC markers while paradoxically also co-expressing SAP and neuronal differentiation markers. The aberrant NCC signature was corroborated with in vivo time-lapse confocal imaging in zebrafish larvae, which revealed transient expansion of sox10 reporter expression in MYCN overexpressing SAPs during the early stages of SAP development. In these aberrant MYCN overexpressing SAP cells, we also found evidence of dampened BMP signaling activity, indicating that BMP signaling disruption occurs following elevated MYCN expression. Furthermore, we discovered that pharmacological inhibition of BMP signaling was sufficient to create an aberrant NCC gene signature in SAP cells, phenocopying MYCN overexpression. Together, our results suggest that MYCN overexpression in SAPs disrupts their differentiation by eliciting abnormal NCC gene expression programs, and dampening BMP signaling response, having developmental implications for the priming of NB in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410271 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310727 | PLOS |
Pulm Circ
July 2025
Division of Pulmonary, Critical Care, and Sleep Medicine Tufts Medical Center Boston Massachusetts USA.
Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction, proliferation, fibrosis, and microthrombosis of the pulmonary vasculature, which causes elevated pulmonary arterial pressure and vascular resistance leading to right ventricular failure and death. Previous treatments targeted three known pathways involved in the development of PAH: endothelin, nitric oxide, and prostacyclin. Dysfunctional signaling of the transforming growth factor-beta (TGF-β) family, via bone morphogenetic protein (BMP) receptor 2 and activin signaling, has also been implicated in PAH leading to the development of a new class of therapies.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
September 2025
Department of Biological Sciences, Clemson University, Clemson, SC, USA; Clemson University Center for Human Genetics, Greenwood, SC, USA. Electronic address:
Tetrabromobisphenol A (TBBPA), a widely used flame retardant in textiles and electronics, poses toxicological risks through both environmental and indoor exposures. Biomonitoring studies have detected significant TBBPA levels in prenatal environments, including cord blood, raising concerns about developmental impacts. Using zebrafish as a model, this study addresses critical gaps in understanding how developmental TBBPA exposures perturb regulatory pathways that govern dorsoventral patterning.
View Article and Find Full Text PDFJ Proteome Res
September 2025
State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Shell matrix proteins (SMPs) are fundamental biological macromolecules for mollusk shell formation, yet fewer than 400 SMPs in mollusks have been previously identified, hindering our understanding of how mollusks construct and maintain their shells. Here, we identified 1689 SMPs in the Pacific oyster using three different mass spectrometry techniques, representing a significant methodological advancement in shell proteomics, enabling a 6.52-fold increase in SMP identification compared to previous studies.
View Article and Find Full Text PDFDev Biol
September 2025
Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115 USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115 USA; Harvard Stem Cell Institute, 7 Divinity Ave, Cambridge, MA 02138 USA. Electronic address:
The mechanisms mediating endochondral bone formation remain incompletely understood. Here, we show that CXXC Finger Protein 1 (CFP1) is required for the onset of chondrogenesis during forelimb development. CFP1-deficient mesenchymal progenitor cells (LMPs) retain an immature molecular signature with elevated FGF and SHH signaling and repressed BMP signaling, in part, due to (1) reduced expression of type I BMP receptors, (2) reduced Smad1 protein levels and (3) an altered extracellular niche.
View Article and Find Full Text PDFAm J Hematol
September 2025
Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
The bone morphogenetic protein (BMP)-SMAD signaling pathway is central to regulating hepcidin, the master regulator of systemic iron homeostasis. We have previously demonstrated that BMP6, BMP2, and, to a lesser extent, BMP5 are the major ligands contributing to hepcidin and iron homeostasis regulation in vivo. Hemojuvelin (HJV) and homeostatic iron regulator (HFE) are hepcidin modulators that are mutated in hereditary hemochromatosis.
View Article and Find Full Text PDF