98%
921
2 minutes
20
Diabetic wounds are often chronic in nature, and issues like elevated blood sugar, bacterial infections, oxidative stress and persistent inflammation impede the healing process. To ensure the appropriate healing of wounds, scaffolds should promote complete tissue regeneration in wounds, both functionally and structurally. However, the available scaffolds lack the explicit architecture and functionality that could match those of native skin, thus failing to carry out the scar-free skin regeneration in diabetic wounds. This study deals with the synthesis of a bi-layered nanofibrous scaffold mimicking the native skin architecture in terms of porosity and hydrophobic-hydrophilic gradients. In addition, herbal extracts of and litchi honey were added in consecutive layers to manage the high blood glucose level, inflammation, and increased ROS level associated with diabetic wounds. studies confirmed that the prepared scaffold with herbal extracts showed enhanced proliferation of skin cells with good mechanical strength, degradability, anti-bacterial and anti-diabetic properties. The scaffold also demonstrated superior wound healing with quicker scar-free wound recovery and appropriate skin regeneration, compared to conventional treatment. Altogether, the synthesized herbal extract loaded bi-layered nanofibrous scaffold can be used as a regenerative template for hard-to-heal diabetic wounds, offering a new strategy for the management of chronic wounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4tb01469c | DOI Listing |
J Craniofac Surg
September 2025
Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta.
Purpose: To demonstrate the use of negative pressure wound therapy (NPWT) and other reconstructive techniques in the reconstruction of large tissue defects resulting from periocular necrotizing fasciitis (NF).
Methods: Description of technique with 3 illustrative cases and accompanying photographic montage.
Results: Technique: Debridement successfully spared post-septal tissues and the lid margin in all cases.
Adv Exp Med Biol
September 2025
Department of Stem Cells & Regenerative Medicine, Center for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.
Wound healing is a dynamic and complex process that consists of four interconnected phases: hemostasis, inflammation, proliferation, and remodeling. This complex process is based on the coordinated actions of growth factors, cytokines, and other cellular interactions. However, conditions such as diabetes and chronic illnesses can disrupt this process and lead to nonhealing wounds or chronic ulcers.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Bioengineering, Yildiz Technical University, Istanbul, 34722, Turkey.
Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Plastic Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.
Diabetic infected wounds represent a formidable clinical challenge characterized by persistent hyperglycemia-induced pathological cascades that disrupt normal healing processes through multiple mechanisms including chronic inflammation, oxidative stress, and microvascular dysfunction. As prototypical chronic wounds, they exhibit severely impaired tissue regeneration due to this multifaceted dysfunction in both skin architecture and biological function. Metal-organic frameworks (MOFs) have emerged as promising next-generation therapeutic platforms owing to their exceptional structural tunability, multifunctional properties, and precise spatiotemporal drug delivery capabilities.
View Article and Find Full Text PDFCureus
August 2025
General Surgery, Sree Balaji Medical College and Hospital, Chennai, IND.
Background Diabetic foot ulcers (DFUs) are a major complication of diabetes, posing significant challenges due to impaired wound healing, increased infection risk, and frequent need for surgical intervention. Optimal wound care is essential to reduce morbidity, hospital stay, and healthcare costs. While povidone iodine is a common antiseptic dressing, Metrogyl (metronidazole) targets anaerobic bacteria and may offer superior outcomes in chronic, infected wounds.
View Article and Find Full Text PDF