98%
921
2 minutes
20
The diverse physiography of the Portuguese land and marine territory, spanning from continental Europe to the Atlantic archipelagos, has made it an important repository of biodiversity throughout the Pleistocene glacial cycles, leading to a remarkable diversity of species and ecosystems. This rich biodiversity is under threat from anthropogenic drivers, such as climate change, invasive species, land use changes, overexploitation, or pathogen (re)emergence. The inventory, characterisation, and study of biodiversity at inter- and intra-specific levels using genomics is crucial to promote its preservation and recovery by informing biodiversity conservation policies, management measures, and research. The participation of researchers from Portuguese institutions in the European Reference Genome Atlas (ERGA) initiative and its pilot effort to generate reference genomes for European biodiversity has reinforced the establishment of Biogenome Portugal. This nascent institutional network will connect the national community of researchers in genomics. Here, we describe the Portuguese contribution to ERGA’s pilot effort, which will generate high-quality reference genomes of six species from Portugal that are endemic, iconic, and/or endangered and include plants, insects, and vertebrates (fish, birds, and mammals) from mainland Portugal or the Azores islands. In addition, we outline the objectives of Biogenome Portugal, which aims to (i) promote scientific collaboration, (ii) contribute to advanced training, (iii) stimulate the participation of institutions and researchers based in Portugal in international biodiversity genomics initiatives, and (iv) contribute to the transfer of knowledge to stakeholders and engaging the public to preserve biodiversity. This initiative will strengthen biodiversity genomics research in Portugal and fuel the genomic inventory of Portuguese eukaryotic species. Such efforts will be critical to the conservation of the country’s rich biodiversity and will contribute to ERGA’s goal of generating reference genomes for European species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408531 | PMC |
http://dx.doi.org/10.1038/s44185-024-00061-7 | DOI Listing |
J Cosmet Dermatol
September 2025
School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, People's Republic of China.
Background: In recent years, the problem of female alopecia has been increasing and has shown a trend toward youthfulness. However, there are fewer studies on young female alopecia in the existing literature.
Aim: We aimed to study the possible causes of hair loss in young Chinese females aged 18-35 with oily scalps.
Mol Phylogenet Evol
September 2025
Laboratory of Biodiversity and Evolution of Protozoa, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China. Electronic address:
Early-branching eukaryotes are associated with the early branching events during eukaryogenesis. Understanding their genomic diversity and evolution can provide insights into the origin and speciation of eukaryotes. Ciliated protists (ciliates) are a group of early-branching unicellular eukaryotes with a high biodiversity, making them excellent models for evolutionary studies.
View Article and Find Full Text PDFBrief Bioinform
September 2025
Department of Computer Science, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.
Motivation: Mobile genetic elements (MGEs) play an important role in facilitating the acquisition of antibiotic resistance genes (ARGs) within microbial communities, significantly impacting the evolution of antibiotic resistance. Understanding the mechanism and trajectory of ARG acquisition requires a comprehensive analysis of the ARG-carrying mobilome-a collective set of MGEs carrying ARGs. However, identifying the mobilome within complex microbiomes poses considerable challenges.
View Article and Find Full Text PDFMol Phylogenet Evol
September 2025
School of Ecology and Environmental Science, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Life Sciences, Yunnan University, Kunming 650504 Yunnan, China. Electronic address:
The advent of high-throughput genomic sequencing has provided unprecedented access to genome-scale data. This deluge of data has yielded new insights into phylogenetic relationships across the tree of life. However, incongruent results arising from different data partitions or from the use of different analyses have often been overlooked or insufficiently explored.
View Article and Find Full Text PDFMar Genomics
September 2025
MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China. Electronic address:
Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur compound produced by various marine organisms and plays a central role in global sulfur and carbon cycling through microbial catabolism. In this study, we present the complete genome sequence and functional annotation of Paracoccus homiensis HT-F, a marine bacterium isolated from intertidal algae of the Yellow Sea, China. The genome comprises a 2,714,952 bp circular chromosome with a GC content of 63.
View Article and Find Full Text PDF