Quaternary climatic fluctuations had a substantial influence on ecosystems, species distribution, phenology and genetic diversity, driving extinction, adaptation and demographic shifts during glacial periods and postglacial expansions. Integration of genomic data and environmental niche modelling can provide valuable insights on how organisms responded to past environmental variations and contribute to assessing vulnerability and resilience to ongoing climatic challenges. Among vertebrates, turtles are particularly vulnerable to habitat changes because of distinctive life history traits and the effect of environmental conditions on physiology and survival.
View Article and Find Full Text PDFSalmonids have a remarkable ability to form sympatric morphs after postglacial colonisation of freshwater lakes. These morphs often differ in morphology, feeding and spawning behaviour. Here, we explored the genetic basis of morph differentiation in Arctic charr (n = 283) by first establishing a high-quality reference genome and then using this in whole genome sequencing of distinct morphs present in two Norwegian and two Icelandic lakes.
View Article and Find Full Text PDFGenetic diversity is a fundamental aspect of biodiversity, yet it is rarely assessed and monitored in conservation practice. Unionid freshwater mussels exemplify the dramatic loss of biodiversity in freshwater ecosystems, yet genomic data for these ecologically important species remain scarce. Here, we conducted a high-resolution population genomics study of all Anodonta species in Switzerland, with a focus on two species with contrasting reproductive strategies.
View Article and Find Full Text PDFAccurately predicting species' responses to anthropogenic climate change is hampered by limited knowledge of their spatiotemporal ecological and evolutionary dynamics. We combine landscape genomics, demographic reconstructions, and species distribution models to assess the eco-evolutionary responses to past climate fluctuations and to future climate of an Afro-Palaearctic migratory raptor, the lesser kestrel (Falco naumanni). We uncover two evolutionarily and ecologically distinct lineages (European and Asian), whose demographic history, evolutionary divergence, and historical distribution range were profoundly shaped by past climatic fluctuations.
View Article and Find Full Text PDFThe European green toad (Bufotes viridis) is geographically widely distributed. While the species global conservation status is labeled as of least concern by the IUCN, it is declining in many parts of its range where populations are fragmented and isolated. A high-quality reference genome is an important resource for conservation genomic researchers who are trying to understand and interpret the genomic signals of population decline, inbreeding, and the accumulation of deleterious mutations.
View Article and Find Full Text PDFThis study presents the first results from the analysis of water mites collected in Portugal as part of the Biodiversity Genomics Europe project. 307 COI DNA barcodes clustered into 75 BINs are provided, with 38 BINs being unique and deposited for the first time in the Barcode of Life Data Systems (BOLD). 65 species have been identified, of which 36 are new to the water mite fauna of Portugal.
View Article and Find Full Text PDFBMC Ecol Evol
December 2023
Background: Evidence of correlation between genome size, the nuclear haploid DNA content of a cell, environmental factors and life-history traits have been reported in many animal species. Genome size, however, spans over three orders of magnitude across taxa and such a correlation does not seem to follow a universal pattern. In squamate reptiles, the second most species-rich order of vertebrates, there are currently no studies investigating drivers of genome size variability.
View Article and Find Full Text PDFTrends Genet
July 2023
The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species.
View Article and Find Full Text PDFInsights into the evolution of non-model organisms are limited by the lack of reference genomes of high accuracy, completeness, and contiguity. Here, we present a chromosome-level, karyotype-validated reference genome and pangenome for the barn swallow (Hirundo rustica). We complement these resources with a reference-free multialignment of the reference genome with other bird genomes and with the most comprehensive catalog of genetic markers for the barn swallow.
View Article and Find Full Text PDFUnlabelled: Globally distributed marine taxa are well suited for investigations of biogeographic impacts on genetic diversity, connectivity, and population demography. The sea turtle genus includes the wide-ranging and abundant olive ridley (), and the geographically restricted and 'Critically Endangered' Kemp's ridley (). To investigate their historical biogeography, we analyzed a large dataset of mitochondrial DNA (mtDNA) sequences from olive (n = 943) and Kemp's (n = 287) ridleys, and genotyped 15 nuclear microsatellite loci in a global sample of olive ridleys (n 285).
View Article and Find Full Text PDFTrends Ecol Evol
March 2022
Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics.
View Article and Find Full Text PDFChronic exposure to pollutants affects natural populations, creating specific molecular and biochemical signatures. In the present study, we tested the hypothesis that chronic exposure to pollutants might have substantial effects on the Manila clam hologenome long after removal from contaminated sites. To reach this goal, a highly integrative approach was implemented, combining transcriptome, genetic and microbiota analyses with the evaluation of biochemical and histological profiles of the edible Manila clam , as it was transplanted for 6 months from the polluted area of Porto Marghera (PM) to the clean area of Chioggia (Venice lagoon, Italy).
View Article and Find Full Text PDFPopulation and conservation genetics studies have greatly benefited from the development of new techniques and bioinformatic tools associated with next-generation sequencing. Analysis of extensive data sets from whole-genome sequencing of even a few individuals allows the detection of patterns of fine-scale population structure and detailed reconstruction of demographic dynamics through time. In this study, we investigated the population structure, genomic diversity and demographic history of the Komodo dragon (Varanus komodoensis), the world's largest lizard, by sequencing the whole genomes of 24 individuals from the five main Indonesian islands comprising the entire range of the species.
View Article and Find Full Text PDFThe study of vertebrate genome evolution is currently facing a revolution, brought about by next generation sequencing technologies that allow researchers to produce nearly complete and error-free genome assemblies. Novel approaches however do not always provide a direct link with information on vertebrate genome evolution gained from cytogenetic approaches. It is useful to preserve and link cytogenetic data with novel genomic discoveries.
View Article and Find Full Text PDFThe Komodo dragon () is an endangered, island-endemic species with a naturally restricted distribution. Despite this, no previous studies have attempted to predict the effects of climate change on this iconic species. We used extensive Komodo dragon monitoring data, climate, and sea-level change projections to build spatially explicit demographic models for the Komodo dragon.
View Article and Find Full Text PDFThe study of animal diet and feeding behaviour is a fundamental tool for the illustration of the ecological role of species in the ecosystem. However, size and quality of food intake samples make it hard for researchers to describe the diet composition of many small species. In our study, we exploited genomic tools for the analysis of the diet composition of the Savi's pine vole (Microtus savii) using DNA barcoding and qPCR techniques for the identification of ingested plant species retrieved from stomach contents.
View Article and Find Full Text PDFMass mortalities due to disease outbreaks have recently affected a number of major taxa in marine ecosystems. Climate- and pollution-induced stress may compromise host immune defenses, increasing the risk of opportunistic diseases. Despite growing evidence that mass mortality events affecting marine species worldwide are strongly influenced by the interplay of numerous environmental factors, the reductionist approaches most frequently used to investigate these factors hindered the interpretation of these multifactorial pathologies.
View Article and Find Full Text PDFMonitor lizards are unique among ectothermic reptiles in that they have high aerobic capacity and distinctive cardiovascular physiology resembling that of endothermic mammals. Here, we sequence the genome of the Komodo dragon Varanus komodoensis, the largest extant monitor lizard, and generate a high-resolution de novo chromosome-assigned genome assembly for V. komodoensis using a hybrid approach of long-range sequencing and single-molecule optical mapping.
View Article and Find Full Text PDFHeredity (Edinb)
August 2019
Despite their long history with the basal split dating back to the Eocene, all species of monitor lizards (family Varanidae) studied so far share the same chromosome number of 2n = 40. However, there are differences in the morphology of the macrochromosome pairs 5-8. Further, sex determination, which revealed ZZ/ZW sex microchromosomes, was studied only in a few varanid species and only with techniques that did not test their homology.
View Article and Find Full Text PDF