98%
921
2 minutes
20
Mammalian DNA replication relies on various DNA helicase and nuclease activities to ensure accurate genetic duplication, but how different helicase and nuclease activities are properly directed remains unclear. Here, we identify the ubiquitin-specific protease, USP50, as a chromatin-associated protein required to promote ongoing replication, fork restart, telomere maintenance, cellular survival following hydroxyurea or pyridostatin treatment, and suppression of DNA breaks near GC-rich sequences. We find that USP50 supports proper WRN-FEN1 localisation at or near stalled replication forks. Nascent DNA in cells lacking USP50 shows increased association of the DNA2 nuclease and RECQL4 and RECQL5 helicases and replication defects in cells lacking USP50, or FEN1 are driven by these proteins. Consequently, suppression of DNA2 or RECQL4/5 improves USP50-depleted cell resistance to agents inducing replicative stress and restores telomere stability. These data define an unexpected regulatory protein that promotes the balance of helicase and nuclease use at ongoing and stalled replication forks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405836 | PMC |
http://dx.doi.org/10.1038/s41467-024-52250-4 | DOI Listing |
NAR Cancer
September 2025
Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States.
The mycotoxin, aflatoxin B (AFB), is a potent mutagen that contaminates agricultural food supplies. After ingestion, AFB is oxidized into a reactive electrophile that alkylates DNA, forming bulky lesions such as the genotoxic formamidopyrimidine lesion, AFB-Fapy dG. This lesion is mainly repaired by nucleotide excision repair (NER) in bacteria; however, in humans the picture is less clear.
View Article and Find Full Text PDFbioRxiv
August 2025
UC San Francisco, Dept. of Microbiology & Immunology, 600 16th St N374, San Francisco, CA 94158.
Anti-bacteriophage systems like restriction-modification and CRISPR-Cas have DNA substrate specificity mechanisms that enable identification of invaders. How Gabija, a highly prevalent nuclease-helicase anti-phage system, executes self- vs. non-self-discrimination remains unknown.
View Article and Find Full Text PDFEssays Biochem
September 2025
Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
R-loop, a three-stranded nucleic acid structure consisting of the RNA:DNA hybrid and the displaced singlestranded DNA, is crucial for many cellular processes but could be a threat to genome integrity if dysregulated. The homeostasis of R-loops is governed by various factors including helicases, nucleases, and chromatin remodelers. Since there are many excellent reviews about R-loops, we focus on discussing how R-loop homeostasis is regulated via nucleic acid and protein modifications.
View Article and Find Full Text PDFNature
September 2025
Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
Nuclease-helicase DNA2 is a multifunctional genome caretaker that is essential for cell proliferation in a range of organisms, from yeast to human. Bi-allelic DNA2 mutations that reduce DNA2 concentrations cause a spectrum of primordial dwarfism disorders, including Seckel and Rothmund-Thomson-related syndromes. By contrast, cancer cells frequently express high concentrations of DNA2 (refs.
View Article and Find Full Text PDFRecBCD, a hetero-trimeric helicase and nuclease, functions in double stranded (ds) DNA break repair and in degrading foreign DNA. RecBCD possesses ATPase motor domains within both RecB (3' to 5') and RecD (5' to 3') and a nuclease domain within RecB (RecB ). RecBCD binds to double stranded DNA ends and initiates DNA unwinding by first melting several DNA base pairs (bp) using only its binding free energy.
View Article and Find Full Text PDF