Self-Diffusion of Ge in Amorphous Ge Si Films Studied In Situ by Neutron Reflectometry.

ACS Mater Au

Institute of Metallurgy, Solid State Kinetics Group, Clausthal University of Technology, Clausthal-Zellerfeld 38678, Germany.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ge Si alloys are gaining renewed interest for many applications in electronics and optics, especially for miniaturized devices showing quantum size effects. Point defects and atomic diffusion play a crucial role in miniaturized and metastable systems. In the present work, Ge self-diffusion in sputter deposited amorphous Ge Si alloys is studied in situ as a function of Ge content = 0.13, 0.43, 0.8, and 1.0 by neutron reflectometry. The determined Ge self-diffusivities obey the Arrhenius law in the investigated temperature ranges. The higher the Ge content , the higher the Ge self-diffusivity at the same temperature. The activation enthalpy decreases with from 4.4 eV for self-diffusion in pure silicon films to about 2 eV self-diffusion in GeSi and Ge. The decrease of the activation enthalpy for amorphous Ge Si is similar to the case of crystalline Ge Si . Possible explanations are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394754PMC
http://dx.doi.org/10.1021/acsmaterialsau.4c00046DOI Listing

Publication Analysis

Top Keywords

studied situ
8
neutron reflectometry
8
activation enthalpy
8
self-diffusion
4
self-diffusion amorphous
4
amorphous films
4
films studied
4
situ neutron
4
reflectometry alloys
4
alloys gaining
4

Similar Publications

Removal of antibiotics from anaerobically digested biosolids via synergistic release using ethylenediaminetetraacetic acid disodium salt dihydrate and sodium persulfate oxidation.

J Environ Manage

September 2025

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China. Electronic address:

Large-scale anaerobic treatment involves a high risk of antibiotic pollution in anaerobically digested (AD) biosolids, which hinders the efficient utilization of farmland AD biosolids. Herein, a process for the in situ removal of antibiotics from AD biosolids using ethylenediaminetetraacetic acid disodium salt dihydrate as the release agent synergized with sodium persulfate oxidation is reported. The developed process was used to remove antibiotics from actual AD biosolids.

View Article and Find Full Text PDF

Decoding the functional roles of multimetallic constituents in high-entropy prussian blue analogues for sodium-ion batteries.

J Colloid Interface Sci

August 2025

School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. Electronic address:

Prussian blue analogues (PBAs) have emerged as promising cathode materials for sodium-ion batteries (SIBs) due to their low cost, simple preparation, and high theoretical specific capacity. The integration of high-entropy concepts with framework-structured PBAs has pioneered a new pathway for performance optimization in SIBs cathodes. However, most scholars have only studied the five elements constituting high entropy as a whole, while challenges such as the role of each element and optimization of the proportions among constituent elements remain unresolved.

View Article and Find Full Text PDF

The correlation between Pb species formation and bioaccessibility in alkaline, smelter-impacted soil co-contaminated with other toxic trace elements after treatment with phosphorus-containing amendments was investigated. The soil was collected near a former copper smelter, El Paso, Texas. It contained Pb (3200 ± 142 mg kg), As (254 ± 14 mg kg), and Cd (110 ± 8 mg kg).

View Article and Find Full Text PDF

Previously published (NMe)[V(O)(μ-O)(pin)], has been shown to aerobically catalyze the oxidation of benzylic and allylic alcohols under mild conditions. Herein, we report syntheses of [V(O)(μ-O)(pin)] trimers, which are also active in OAD catalysis. Trimer formation requires an ammonium cation with at least two hydrogen atoms per cation (e.

View Article and Find Full Text PDF

Insights into the Evolutionary and Ecological Roles of in Arsenic Detoxification.

Environ Sci Technol

September 2025

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.

Arsenic (As) is a prevalent toxic element, posing significant risks to organisms, including microbes. While microbial arsenic detoxification has been extensively studied in bacteria, archaeal mechanisms remain understudied. Here, we investigated arsenic resistance genes in , one of the most abundant archaeal lineages on Earth.

View Article and Find Full Text PDF