Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The magnetic properties of a 2D layered material consisting of high-spin Co complexes, [Co(NHNH)(HO)Cl]Cl ( ), have been extensively characterized using electron paramagnetic resonance, magnetic susceptibility, and low-temperature heat capacity measurements. Electron paramagnetic resonance spectroscopy studies suggest that below 50 K, the = 3/2 orbital triplet state of Co is gradually depopulated in favor of the = 1/2 spin state, which is dominant below 20 K. In light of this, the magnetic susceptibility has been fitted with a two-level model, indicating that the interactions in this material are much weaker than previously thought. This two-level model is unable to fit the data at low temperatures and, combined with electron paramagnetic resonance spectroscopy, suggests that ferromagnetic interactions between Co cations in the = 1/2 state become significant approaching 2 K. Heat capacity measurements suggest the emergence of a long-range ordered state below 246 mK, which neutron diffraction confirms to be ferromagnetic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393796PMC
http://dx.doi.org/10.1021/acs.chemmater.4c00596DOI Listing

Publication Analysis

Top Keywords

electron paramagnetic
12
paramagnetic resonance
12
layered material
8
magnetic susceptibility
8
heat capacity
8
capacity measurements
8
resonance spectroscopy
8
two-level model
8
low-temperature ferromagnetic
4
ferromagnetic order
4

Similar Publications

Prolonging All-Optical Molecular Electron Spin Coherence in the Tissue Transparency Window.

J Am Chem Soc

September 2025

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].

View Article and Find Full Text PDF

Unlocking High-Performance Electrochemiluminescence in Supramolecular Coordination Frameworks via π-Bridge Engineering and Aggregation.

Small

September 2025

School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.

Aggregation-induced electrochemiluminescence (AIECL) is a promising strategy for enhancing electrochemiluminescence (ECL) efficiency by minimizing energy loss of excited-state ECL emitters. However, rational design of high-efficiency AIECL emitters is hindered by limited mechanistic understanding and an unclear structure-performance relationship. To address this, four supramolecular coordination frameworks (SCFs) with varying π-bridge structures are synthesized using pyridine-functionalized tetraphenylethene (TPE) as the ligand and Pt(II) as the coordination center.

View Article and Find Full Text PDF

Synergistic interface and oxygen/nitrogen vacancy engineering in g-CN/CuO under high pressure for efficient CO photoreduction.

J Colloid Interface Sci

September 2025

WPI, International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan; Mitsui Chemicals, Inc -.Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka 819-0395, Japan. Electronic address:

This study explores highly active nitride-based g-CN/CuO photocatalysts for CO photoconversion by synthesizing them through high-pressure torsion (HPT) straining. Data indicate that increasing the applied strain under high pressure promotes vacancy formation and improves the electronic interaction at the g-CN/CuO interphases, enabling superior charge separation and extended light absorption. The generation of dual vacancies of oxygen and nitrogen is verified by electron paramagnetic resonance and Fourier transform infrared spectroscopic methods, and the generation of a type-II heterojunction is confirmed by band structure analysis.

View Article and Find Full Text PDF

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF

Ultrasmall MoC-MoO Heterojunction Coupled with Nitrogen-Doped Reduced Graphene for Boosting the Deep Oxidative Desulfurization of Fuel Oils.

Langmuir

September 2025

Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, Engineering Research Center of High-frequency Soft Magnetic Materials and Ceramic Powder Materials of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, Chaoh

In this study, a MoC-MoO@NCrGO-900 composite catalyst comprising two-dimensional nitrogen-doped reduced graphene oxide (NCrGO) and ultrasmall molybdenum carbide-molybdenum dioxide (MoC-MoO) heterojunctions was synthesized. The optimized catalyst exhibited an outstanding oxidative desulfurization (ODS) performance. Specifically, a model oil containing 4000 ppm sulfur was completely desulfurized within 30 min, with a desulfurization efficiency of 98.

View Article and Find Full Text PDF