Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The essential oil and β-cyclodextrin inclusion complex was able to inhibit the growth of Penicillium digitatum, a damaging pathogen that causes green mold in citrus fruit. In this study, cinnamaldehyde-β-cyclodextrin inclusion complex (β-CDCA) for controlling citrus green mold was synthesized by the co-precipitation method. Characterization of β-CDCA revealed that the aromatic ring skeleton of cinnamaldehyde (CA) was successfully embedded into the cavity of β-CD to form the inclusion complex. β-CDCA inhibited P. digitatum at a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 4.0 g/L. FT-IR spectroscopy analysis, calcofluor white staining, extracellular alkaline phosphatase (AKP) activity and propidium iodide (PI) staining of hyphae morphology showed that β-CDCA may damage the cell ultrastructure and membrane permeability of P. digitatum. The study further demonstrated that hydrogen peroxide (HO), malondialdehyde (MDA), and reactive oxygen species (ROS) markedly accumulated in 1/2 MIC β-CDCA treated hyphae. This implied that β-CDCA inhibited growth of P. digitatum by the triggering oxidative stress, which may have caused cell death by altering cell membrane permeability. In addition, in vivo results showed that β-CDCA alone or combined with L-phenylalanine (L-PHe) displayed a comparable level to that of prochloraz. Therefore, β-CDCA combined with L-PHe can thus be used as an eco-friendly preservative for the control green mold in postharvest citrus fruit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2024.106040DOI Listing

Publication Analysis

Top Keywords

inclusion complex
16
green mold
16
citrus fruit
12
mold citrus
8
β-cdca
8
complex β-cdca
8
β-cdca inhibited
8
membrane permeability
8
β-cdca combined
8
combination cinnamaldehyde/β-cyclodextrin
4

Similar Publications

Arterial thrombosis is a multifaceted process characterized by platelet aggregation and fibrin deposition, leading to the occlusion of blood vessels. It plays a central role in cardiovascular conditions such as myocardial infarction and ischemic stroke. Gaining insight into the mechanisms underlying arterial thrombosis is essential for developing effective treatments aimed at preventing thrombotic events and reducing associated health burdens.

View Article and Find Full Text PDF

Introduction: Congenital Hypogonadotropic Hypogonadism (CHH) arises from defects in the synthesis, secretion, or action of gonadotropin-releasing hormone (GnRH), resulting in incomplete or absent pubertal development and various non-reproductive features. CHH is genetically heterogeneous, with over 50 genes implicated in its pathogenesis. This study aimed to elucidate the genetic variants of CHH in a cohort of patients from a single-center endocrinology unit.

View Article and Find Full Text PDF

Complexity and Health Care Utilization in Infant ESKD.

Kidney360

September 2025

Department of Pediatrics, Division of Pediatric Nephrology, Baylor College of Medicine, Houston, TX, United States.

Background: Dialysis in neonates with ESKD is often associated with multiple comorbidities and the need for more intensified dialysis regimens. With recent advances in prenatal interventions and infant specific KRT, survival of neonates with ESKD has improved over the last decade. Little is known however about the impact on the health care system of improved survival in this population.

View Article and Find Full Text PDF

Wrist biomechanics remain incompletely understood due to the complexity of experimental measurements in this multi-bone joint system. Finite element analysis provides a powerful alternative for investigating internal variables such as carpal kinematics and displacement patterns. This technical brief compares two bone representation approaches, all-cortical versus cortical-trabecular, using two distinct finite element models developed from the same wrist CT dataset.

View Article and Find Full Text PDF

Introduction: Three-dimensional printing (3DP) technology has increasingly gained attention in orthopedic oncology, where complex tumor resections and reconstructions demand high precision. 3DP enables the creation of patient-specific models and prostheses, which can improve postoperative quality of life for patients while assisting surgeons in preoperative planning, enhancing surgical accuracy, and improving outcomes in complex oncologic cases. Despite its potential, comprehensive data on the effectiveness and applications of 3DP in orthopedic oncology are limited.

View Article and Find Full Text PDF