98%
921
2 minutes
20
Musculoskeletal Disorders (MSDs) stand as a prominent cause of injuries in modern agriculture. Scientific research has highlighted a causal link between MSDs and awkward working postures. Several methods for the evaluation of working postures, and related risks, have been developed such as the Rapid Upper Limb Assessment (RULA). Nevertheless, these methods are generally applied with manual measurements on pictures or videos. As a consequence, their applicability could be scarce, and their effectiveness could be limited. The use of wearable sensors to collect kinetic data could facilitate the use of these methods for risk assessment. Nevertheless, the existing system may not be usable in the agricultural and vine sectors because of its cost, robustness and versatility to the various anthropometric characteristics of workers. The aim of this study was to develop a technology capable of collecting accurate data about uncomfortable postures and repetitive movements typical of vine workers. Specific objectives of the project were the development of a low-cost, robust, and wearable device, which could measure data about wrist angles and workers' hand positions during possible viticultural operations. Furthermore, the project was meant to test its use to evaluate incongruous postures and repetitive movements of workers' hand positions during pruning operations in vineyard. The developed sensor had 3-axis accelerometers and a gyroscope, and it could monitor the positions of the hand-wrist-forearm musculoskeletal system when moving. When such a sensor was applied to the study of a real case, such as the pruning of a vines, it permitted the evaluation of a simulated sequence of pruning and the quantification of the levels of risk induced by this type of agricultural activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398071 | PMC |
http://dx.doi.org/10.3390/s24175703 | DOI Listing |
J Neuroeng Rehabil
September 2025
Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, 72076, Tübingen, Germany.
Innovative technology allows for personalization of stimulation frequency in dual-site deep brain stimulation (DBS), offering promise for challenging symptoms in advanced Parkinson's disease (PD), particularly freezing of gait (FoG). Early results suggest that combining standard subthalamic nucleus (STN) stimulation with substantia nigra pars reticulata (SNr) stimulation may improve FoG outcomes. However, patient response and the optimal SNr stimulation frequency vary.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Communications and Electronics, Delta University for Science and Technology, Mansoura, Egypt.
J Colloid Interface Sci
September 2025
Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China. Electronic address:
Developing high-performance wearable flexible sensors that can adapt well to complex environments has become a hotspot. Herein, a polyvinyl alcohol based composite hydrogel sensor with high mechanical strength, desirable frost/swelling resistance, and highly sensitive sensing performance was proposed by a multi-component collaborative design strategy. Meanwhile, an intelligent gesture recognition system was established by combining machine learning algorithm.
View Article and Find Full Text PDFEmerg Top Life Sci
September 2025
Hurdle.bio / Chronomics Ltd., London, UK.
Artificial intelligence (AI) is transforming many fields, including healthcare and medicine. In biomarker discovery, AI algorithms have had a profound impact, thanks to their ability to derive insights from complex high-dimensional datasets and integrate multi-modal datatypes (such as omics, electronic health records, imaging or sensor and wearable data). However, despite the proliferation of AI-powered biomarkers, significant hurdles still remain in translating them to the clinic and driving adoption, including lack of population diversity, difficulties accessing harmonised data, costly and time-consuming clinical studies, evolving AI regulatory frameworks and absence of scalable diagnostic infrastructure.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.
View Article and Find Full Text PDF