A Predictive Quality Inspection Framework for the Manufacturing Process in the Context of Industry 4.0.

Sensors (Basel)

Faculty of Materials Science and Technology in Trnava, Institute of Applied Informatics, Automation and Mechatronics, Slovak University of Technology in Bratislava, 811 07 Bratislava, Slovakia.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The purpose of this research is to develop an innovative software framework with AI capabilities to predict the quality of automobiles at the end of the production line. By utilizing machine learning techniques, this framework aims to prevent defective vehicles from reaching customers, thus enhancing production efficiency, reducing costs, and shortening the manufacturing time of automobiles. The principal results demonstrate that the predictive quality inspection framework significantly improves defect detection and supports personalized road tests. The major conclusions indicate that integrating AI into quality control processes offers a sustainable, long-term solution for continuous improvement in automotive manufacturing, ultimately increasing overall production efficiency. The economic benefit of our solution is significant. Currently, a final test drive takes 10-30 min, depending on the car model. If 200,000-300,000 cars are produced annually and our data prediction of quality saves 10 percent of test drives with test drivers, this represents a minimum annual saving of 200,000 production minutes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397864PMC
http://dx.doi.org/10.3390/s24175644DOI Listing

Publication Analysis

Top Keywords

predictive quality
8
quality inspection
8
inspection framework
8
production efficiency
8
framework
4
framework manufacturing
4
manufacturing process
4
process context
4
context industry
4
industry purpose
4

Similar Publications

Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.

View Article and Find Full Text PDF

Background: Health professions students may encounter a range of stressors during their clinical education that may impact their quality of life. This study aimed to explore how various health professions students perceive their quality of life and the environment in which they develop their clinical skills.

Methods: An online survey was administered among registered undergraduate students in the physiotherapy, speech-language pathology, nursing, or medical programs.

View Article and Find Full Text PDF

LONP1 Variants Are Associated With Clinically Diverse Phenotypes.

Clin Genet

September 2025

Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

LONP1 encodes a mitochondrial protease essential for protein quality control and metabolism. Variants in LONP1 are associated with a diverse and expanding spectrum of disorders, including Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies syndrome (CODAS), congenital diaphragmatic hernia (CDH), and neurodevelopmental disorders (NDD), with some individuals exhibiting features of mitochondrial encephalopathy. We report 16 novel LONP1 variants identified in 16 individuals (11 with NDD, 5 with CDH), further expanding the clinical spectrum.

View Article and Find Full Text PDF

Purpose: Targeted therapy with lenvatinib is a preferred option for advanced hepatocellular carcinoma, however, predicting its efficacy remains challenging. This study aimed to build a nomogram integrating clinicoradiological indicators and radiomics features to predict the response to lenvatinib in patients with hepatocellular carcinoma.

Methods: This study included 211 patients with hepatocellular carcinoma from two centers, who were allocated into the training (107 patients), internal test (46 patients) and external test set(58 patients).

View Article and Find Full Text PDF

Low-cost and high-throughput RNA sequencing data for barley RILs achieved GP performance comparable to or better than traditional SNP array datasets when combined with parental whole-genome sequencing SNP data. The field of genomic selection (GS) is advancing rapidly on many fronts including the utilization of multi-omics datasets with the goal of increasing prediction ability and becoming an integral part of an increasing number of breeding programs ensuring future food security. In this study, we used RNA sequencing (RNA-Seq) data to perform genomic prediction (GP) on three related barley RIL populations.

View Article and Find Full Text PDF