98%
921
2 minutes
20
The rapid growth of the horticultural industry has increased demand for soilless cultivation substrates. Peat, valued for its physical and chemical properties, is widely used in soilless cultivation. However, peat is non-renewable, and over-extraction poses serious ecological risks. Therefore, sustainable alternatives are urgently needed. Ammonium incubation, a novel method to reduce phytotoxicity, offers the potential for green waste, a significant organic solid waste resource, to substitute peat. This study optimized the ammonium incubation process to reduce green waste phytotoxicity. It systematically examined different nitrogen salts (type and amount) and environmental conditions (temperature, aeration, duration) affecting detoxification efficiency. Results show a significant reduction in phytotoxicity with ammonium bicarbonate, carbonate, and sulfate, especially carbonate, at 1.5%. Optimal conditions were 30 °C for 5 days with regular aeration. Under these conditions, ammonium salt-treated green waste significantly reduced total phenolic content and stabilized germination index (GI) at a non-phytotoxic level (127%). Using treated green waste as a partial peat substitute in lettuce cultivation showed promising results. This low-cost, low-energy method effectively converts green waste into sustainable peat alternatives, promoting eco-friendly horticulture and environmental conservation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397023 | PMC |
http://dx.doi.org/10.3390/plants13172360 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China.
Transient electronics that can degrade after fulfilling their designed functionalities offer transformative potentials in biomedical implants (eliminating secondary surgeries), ecofriendly consumer electronics (reducing e-waste), and secure systems. However, the development of reliable transient energy supplies remains a critical challenge, thus limiting their widespread implementation. Among various solutions, wireless power supplies via near-field inductive coupling stand out as particularly promising candidates.
View Article and Find Full Text PDFAcc Chem Res
September 2025
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
ConspectusHydroaminoalkylation, the catalytic addition of amines to alkenes, has evolved as a powerful tool in modern synthetic chemistry, offering an atom-economic and green approach to the construction of C-C bonds. This reaction enables the direct amine functionalization of alkenes and alkynes without the need for protecting groups, directing groups, or prefunctionalization, thereby eliminating stoichiometric waste and minimizing synthetic steps. Over the past two decades, significant advances in catalyst development and mechanistic understanding have expanded the scope of hydroaminoalkylation, allowing for control over regio-, diastereo-, and enantioselectivity.
View Article and Find Full Text PDFACS Electrochem
September 2025
School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.
View Article and Find Full Text PDFFEBS Open Bio
September 2025
Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
The global accumulation of plastic waste, exceeding 360 million tonnes annually, represents a critical environmental challenge due to their widespread use and extreme recalcitrance in natural environments. Furthermore, the end-of-life processing of bioplastics, which are often marketed as eco-friendly, remains problematic, with biodegradation often requiring industrial conditions. Enzyme-based depolymerization of polyesters, such as polyethylene terephthalate (PET) and bioplastics (e.
View Article and Find Full Text PDFBioresour Technol
September 2025
College of Forestry, Beijing Forestry University, Beijing 100083, PR China. Electronic address:
The timing of microbial inoculation is a decisive factor influencing both the efficiency and quality of green waste (GW) composting. This study evaluated the effects of applying a self-developed lignocellulose-degrading compound microbial inoculum at different composting phases (mesophilic, thermophilic, and cooling) compared to a commercial Effective Microorganisms agent. Thermophilic-phase inoculation (T2) was most effective by enhancing the complementary metabolic functions between strains, thus establishing an efficient lignocellulose degradation system.
View Article and Find Full Text PDF