Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The complement system and neutrophils play crucial roles in innate immunity. Neutrophils release neutrophil extracellular traps (NETs), which are composed of decondensed DNA entangled with granular contents, as part of their innate immune function. Mechanisms governing complement-mediated NET formation remain unclear. In this study, we tested a two-step NETosis mechanism, as follows: classical complement-mediated neutrophil activation in serum and subsequent NET formation in serum-free conditions, using neutrophils from healthy donors, endothelial cells, and various assays (Fluo-4AM, DHR123, and SYTOX), along with flow cytometry and confocal microscopy. Our findings reveal that classical complement activation on neutrophils upregulated the membrane-anchored complement regulators CD46, CD55, and CD59. Additionally, complement activation increased CD11b on neutrophils, signifying activation and promoting their attachment to endothelial cells. Complement activation induced calcium influx and citrullination of histone 3 (CitH3) in neutrophils. However, CitH3 formation alone was insufficient for NET generation. Importantly, NET formation occurred only when neutrophils were in serum-free conditions. In such environments, neutrophils induced NADPH oxidase-dependent reactive oxygen species (ROS) production, leading to NET formation. Hence, we propose that complement-mediated NET formation involves a two-step process, as follows: complement deposition, neutrophil priming, calcium influx, CitH3 formation, and attachment to endothelial cells in serum. This is followed by NADPH-dependent ROS production and NET completion in serum-free conditions. Understanding this process may unveil treatment targets for pathologies involving complement activation and NET formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394910PMC
http://dx.doi.org/10.3390/ijms25179625DOI Listing

Publication Analysis

Top Keywords

net formation
24
complement activation
20
serum-free conditions
16
calcium influx
12
endothelial cells
12
two-step netosis
8
complement
8
nadph oxidase-dependent
8
neutrophils
8
net
8

Similar Publications

Monatomic glass formation through competing order balance.

Nat Commun

September 2025

Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.

The phase transformation of single-element systems is a fundamental natural process with broad implications, yet many aspects remain puzzling despite their simplicity. For instance, transition metals, Tantalum (Ta) and Zirconium (Zr), commonly form body-centred cubic crystals when supercooled. However, according to large-scale computer simulations, their crystallisation rates can differ by over 100 times.

View Article and Find Full Text PDF

Trio fatale: Neutrophils, NETs, and necrosis.

Immunity

September 2025

Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria. Electronic address:

In a recent issue of Nature, Adrover et al. report a neutrophil subset that induces pleomorphic tumor necrosis through neutrophil extracellular trap (NET)-mediated vascular occlusion. This process drives epithelial-to-mesenchymal transition (EMT) and metastasis of perinecrotic cancer cells, reframing necrosis as an active process and uncovering targetable mechanisms to combat cancer dissemination.

View Article and Find Full Text PDF

Heart failure remains a major global health concern characterized by complex pathophysiological processes and significant clinical challenges. While the distinct roles of metabolic and epigenetic dysregulation in heart failure are increasingly recognized, their intricate interplay remains a critical, yet underexplored, aspect of its pathophysiology. This review provides a comprehensive examination of this metabolic-epigenetic crosstalk, exploring how metabolic changes, such as impaired fatty acid oxidation, increased glycolysis, and mitochondrial dysfunction, alter epigenetic landscapes through shifts in intermediary metabolites including acetyl-CoA, NAD+, and α-ketoglutarate.

View Article and Find Full Text PDF

Transcriptome analysis of shade-induced growth and photosynthetic responses in soybean cultivars.

PLoS One

September 2025

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRl). Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Bei

Shade stress alters soybean growth through transcriptomic changes and adaptive responses that optimize light capture and utilization, regulated by a phytohormonal network. This study examined the physiological, morphological, and molecular responses of Guru (shade-tolerant) and Heinong 53 (shade-sensitive) soybean cultivars under 0% (control), 30%, and 70% shade. Results revealed morphological responses where Heinong 53 exhibited greater plant height (52.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) complicated with ischemic stroke is a major challenge to global public health and is related to poor prognosis. However, the role of blood urea nitrogen(BUN)to serum albumin ratio (BAR) in predicting in-hospital mortality of T2DM patients with ischemic stroke has not been fully explored. This study was carried out to investigate the relationship between BAR level and in-hospital mortality of T2DM patients with ischemic stroke.

View Article and Find Full Text PDF