98%
921
2 minutes
20
The peptide hormone ghrelin is produced in cardiomyocytes and acts through the myocardial growth hormone secretagogue receptor (GHSR) to promote cardiomyocyte survival. Administration of ghrelin may have therapeutic effects on post-myocardial infarction (MI) outcomes. Therefore, there is a need to develop molecular imaging probes that can track the dynamics of GHSR in health and disease to better predict the effectiveness of ghrelin-based therapeutics. We designed a high-affinity GHSR ligand labeled with F for imaging by PET and characterized its in vivo properties in a canine model of MI. We rationally designed and radiolabeled with F a quinazolinone derivative ([F]LCE470) with subnanomolar binding affinity to GHSR. We determined the sensitivity and in vivo and ex vivo specificity of [F]LCE470 in a canine model of surgically induced MI using PET/MRI, which allowed for anatomic localization of tracer uptake and simultaneous determination of global cardiac function. Uptake of [F]LCE470 was determined by time-activity curve and SUV analysis in 3 regions of the left ventricle-area of infarct, territory served by the left circumflex coronary artery, and remote myocardium-over a period of 1.5 y. Changes in cardiac perfusion were tracked by [N]NH PET. The receptor binding affinity of LCE470 was measured at 0.33 nM, the highest known receptor binding affinity for a radiolabeled GHSR ligand. In vivo blocking studies in healthy hounds and ex vivo blocking studies in myocardial tissue showed the specificity of [F]LCE470, and sensitivity was demonstrated by a positive correlation between tracer uptake and GHSR abundance. Post-MI changes in [F]LCE470 uptake occurred independently of perfusion tracer distributions and changes in global cardiac function. We found that the regional distribution of [F]LCE470 within the left ventricle diverged significantly within 1 d after MI and remained that way throughout the 1.5-y duration of the study. [F]LCE470 is a high-affinity PET tracer that can detect changes in the regional distribution of myocardial GHSR after MI. In vivo PET molecular imaging of the global dynamics of GHSR may lead to improved GHSR-based therapeutics in the treatment of post-MI remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2967/jnumed.124.267578 | DOI Listing |
Chembiochem
September 2025
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str. 5/2, 220084, Minsk, Belarus.
The terminal deoxynucleotidyl transferase is a unique polymerase that incorporates nucleotides at the 3'-terminus of single-stranded DNA primers in a template-independent manner. This biological function propels the development of numerous biomedical and bioengineering applications. However, the extensive use of TdT is constrained by its low expression levels in E.
View Article and Find Full Text PDFChembiochem
September 2025
Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia.
Nucleic acid aptamers are artificial recognition elements with great potential in biotechnology. For their effective integration into nanodevices, rational strategies for optimizing aptamer affinity and regulating activity are essential. Artificial nucleotide analogs offer versatile tools for both fundamental and applied research in the aptamer field.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P.R. China.
Developing artificial hosts with temperature-driven conformational switching behaviors facilitates our understanding of the temperature-dependent allostery and adaptation mechanisms in natural recognition systems. Herein, we report the design and synthesis of three pairs of water-soluble, enantiomeric binaphthalene-based tetraimidazolium macrocycles (SS/RR-1•4Cl- - SS/RR-3•4Cl-) as artificial hosts for exploring sequence-selective recognition of dinucleotides in aqueous media. Owing to the reversible rotational conformation of axially chiral binaphthyl units, SS-1•4Cl- demonstrates the conformational switching, converting from cis-conformation (SS-1) to trans-conformation (SS-1) by increasing temperature, thereby causing the recognition cavity to transition from a closed to an open state.
View Article and Find Full Text PDFMol Inform
September 2025
Department of Computational Chemistry, "Coriolan Drăgulescu" Institute of Chemistry Timișoara, Romanian Academy, Timișoara, Romania.
Docking is a structure-based cheminformatics tool broadly employed in early drug discovery. Based on the tridimensional structure of the protein target, docking is used to predict the binding interactions between the protein and a ligand, estimate the corresponding binding affinity, or perform virtual screenings (VSs) to identify new active compounds. This study introduces the ligand B-factor index (LBI), a novel computational metric for prioritizing protein-ligand complexes for docking.
View Article and Find Full Text PDFActa Pharmacol Sin
September 2025
Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
Non-small cell lung cancer (NSCLC) is an aggressive malignancy with a poor prognosis. Abnormal expression of focal adhesion kinase (FAK) is closely linked to NSCLC progression, highlighting the need for effective FAK inhibitors in NSCLC treatment. In this study we conducted high-throughput virtual screening combined with cellular assays to identify potential FAK inhibitors for NSCLC treatment.
View Article and Find Full Text PDF