Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Salt sensitivity of blood pressure (SSBP), characterized by acute changes in blood pressure with changes in dietary sodium intake, is an independent risk factor for cardiovascular disease and mortality in people with and without hypertension. We previously found that elevated sodium concentration activates antigen-presenting cells (APCs), resulting in high blood pressure, but the mechanisms are unknown. Here, we hypothesized that APC-specific JAK2 (Janus kinase 2) through STAT3 (signal transducer and activator of transcription 3) and SMAD3 (small mothers against decapentaplegic homolog 3) contributes to SSBP.

Methods: We performed bulk or single-cell transcriptomic analyses following in vitro monocytes exposed to high salt and in vivo high sodium treatment in humans using a rigorous salt-loading/depletion protocol to phenotype SSBP. We also used a myeloid cell-specific CD11c JAK2 knockout mouse model and measured blood pressure with radiotelemetry after N-omega-nitro-L-arginine-methyl ester and a high salt diet treatment. We used flow cytometry for immunophenotyping and measuring cytokine levels. Fluorescence in situ hybridization and immunohistochemistry were performed to spatially visualize the kidney's immune cells and cytokine levels. Echocardiography was performed to assess cardiac function.

Results: We found that high salt treatment upregulates gene expression of the JAK/STAT/SMAD pathway while downregulating inhibitors of this pathway, such as suppression of cytokine signaling and cytokine-inducible SH2, in human monocytes. Expression of the JAK2 pathway genes mirrored changes in blood pressure after salt loading and depletion in salt-sensitive but not salt-resistant humans. Ablation of JAK2, specifically in CD11c APCs, attenuated salt-induced hypertension in mice with SSBP. Mechanistically, we found that SMAD3 acted downstream of JAK2 and STAT3, leading to increased production of highly reactive isolevuglandins and proinflammatory cytokine IL (interleukin)-6 in renal APCs, which activate T cells and increase production of IL-17A, IL-6, and TNF-α (tumor necrosis factor-alpha).

Conclusions: Our findings reveal the APC JAK2 signaling pathway as a potential target for the diagnosis and treatment of SSBP in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466692PMC
http://dx.doi.org/10.1161/CIRCRESAHA.124.323595DOI Listing

Publication Analysis

Top Keywords

blood pressure
24
high salt
12
salt sensitivity
8
sensitivity blood
8
changes blood
8
cytokine levels
8
salt
6
blood
6
pressure
6
jak2
6

Similar Publications

Study Design: A retrospective study with a crossover design.

Objectives: Maintaining mean arterial pressure (MAP) is crucial in the early management of SCI, yet the role of oral midodrine in this setting remains unclear. This study evaluates whether midodrine facilitates IV vasopressor weaning within 24 hours of initiation.

View Article and Find Full Text PDF

Background: The clinical course and outcomes of alcohol-associated hepatitis (AH) remain poorly understood. Major adverse liver outcomes (MALO) do not capture the added risk of return to drinking (RTD). We examined the natural history of AH and developed a composite endpoint using a contemporary observational cohort of AH.

View Article and Find Full Text PDF

There is a lack of longitudinal data on type 2 diabetes (T2D) in low- and middle-income countries. We leveraged the electronic health records (EHR) system of a publicly funded academic institution to establish a retrospective cohort with longitudinal data to facilitate benchmarking, surveillance, and resource planning of a multi-ethnic T2D population in Malaysia. This cohort included 15,702 adults aged ≥ 18 years with T2D who received outpatient care (January 2002-December 2020) from Universiti Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia.

View Article and Find Full Text PDF

Reduced sleep irregularity does not impact peripheral vascular function before or following total sleep deprivation.

J Appl Physiol (1985)

September 2025

Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, United States of America.

Consistent sleep patterns are associated with better cardiovascular health, while sleep loss is known to impair vascular function. This study examined whether consistent sleep could improve vascular function and mitigate the negative effect of 25-hour total sleep deprivation. Sixteen healthy adults (10 females, 6 males; 34 ± 9 years; BMI: 25 ± 3 kg/m²) completed a randomized crossover study involving two 12-night sleep conditions, habitual sleep and a consistent sleep/wake schedule that were separated by a 1-2-week washout.

View Article and Find Full Text PDF

Vasoconstrictor responsiveness in resting and contracting skeletal muscle following an acute bout of exercise: Impact of aging.

J Appl Physiol (1985)

September 2025

Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa.

Long-term exercise training can attenuate sympathetic vasoconstriction in both resting and contracting skeletal muscle; however, the impact of an acute bout of exercise on vasoconstrictor responsiveness and the influence of aging is unknown. Therefore, we tested the hypothesis that an acute bout of exercise will blunt sympathetic-mediated vasoconstriction in resting and contracting skeletal muscle of young and older adults. Twenty-one adults (10 Young: 23±5 yr and 11 Older: 65±8 yr) performed a rest and a rhythmic handgrip exercise trial before and after either 30 minutes of cycling exercise (60-65% HRmax) or a time control period (seated rest).

View Article and Find Full Text PDF