HDAC1 promotes basal autophagy and proliferation of colorectal cancer cells by mediating ATG16L1 deacetylation.

Biochem Biophys Res Commun

Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, School of Life Sciences, Hunan Normal University, 36 Lushan Road, Changsha, Hunan, 410081, China. Electronic address:

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Autophagy is an evolutionarily conserved degradation pathway for maintaining cellular homeostasis and its dysregulation leads to numerous human diseases such as cancer. As a core protein for autophagy, ATG16L1 (autophagy related 16 like 1) is heavily regulated by post-translational modifications, including phosphorylation, ubiquitination, and methylation, which is critical for autophagy regulation. In this study, we identify HDAC1 (histone deacetylase 1) as a regulator of ATG16L1 acetylation and hence autophagy. Specifically, HDAC1 colocalizes and interacts with ATG16L1, and reduces its acetylation, which is highly dependent on its enzymatic activity. By promoting ATG16L1 deacetylation, HDAC1 enhances ATG16L1 interaction with the ATG12-ATG5 conjugate, resulting in the activation of autophagic pathway. Consistently, the induction of basal autophagy by HDAC1 in colorectal cancer cells largely relies on its deacetylase activity as well as ATG16L1. Moreover, HDAC1 enhances the survival, proliferation, and transformation of colorectal cancer cells in an ATG16L-dependent manner, indicating the fundamental roles of autophagy in colorectal cancer. Together, our findings uncover a novel regulatory mechanism of autophagy and suggest both HDAC1 and ATG16L1 as therapeutic targets for colorectal cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.150667DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
20
cancer cells
12
autophagy hdac1
12
autophagy
9
basal autophagy
8
atg16l1
8
atg16l1 deacetylation
8
hdac1 enhances
8
hdac1
7
cancer
6

Similar Publications

Increased adiposity and chronic psychosocial stress (CPS) are plausible modifiable contributors of the recent increase in early-onset colorectal cancer (EOCRC). We conducted an 8-week randomized controlled pilot trial evaluating the feasibility and acceptability of time restricted eating (TRE) (daily ad libitum eating between 12-8pm) and Mindfulness ("Mindfulness for Beginners" course from the Calm app) among young adults. Participants were randomized to the following groups: TRE ( = 10); Mindfulness ( = 11); TRE & Mindfulness ( = 11); or Control ( = 11).

View Article and Find Full Text PDF

Importance: Patients with advanced cancer frequently receive broad-spectrum antibiotics, but changing use patterns across the end-of-life trajectory remain poorly understood.

Objective: To describe the patterns of broad-spectrum antibiotic use across defined end-of-life intervals in patients with advanced cancer.

Design, Setting, And Participants: This nationwide, population-based, retrospective cohort study used data from the South Korean National Health Insurance Service database to examine broad-spectrum antibiotic use among patients with advanced cancer who died between July 1, 2002, and December 31, 2021.

View Article and Find Full Text PDF

To evaluate the expression of hsa_circ_0077007 in the serum of colorectal cancer (CRC) patients and offer a foundational theory for the prognosis of CRC. The present study focuses on investigating the biological function and therapeutic target of hsa_circ_0077007 in colorectal cancer CRC. Retrieve the GEO database and use the GEO2R tool to analyze the GSE dataset (GSE223001 and GSE159669) to obtain aberrantly expressed circRNAs.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common and lethal malignancies worldwide, with treatment failure often attributed to chemoresistance and evasion of apoptosis. Cathayanon E (CE), a natural chalcone derivative isolated from Morus alba, has shown anticancer potential, but its role and mechanism in CRC remain largely unexplored. In this study, CE significantly inhibited CRC cell proliferation and induced apoptosis both in vitro and in vivo.

View Article and Find Full Text PDF