Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Most hosts contain few parasites, whereas few hosts contain many. This pattern, known as aggregation, is well-documented in macroparasites where parasite intensity distribution among hosts affects host-parasite dynamics. Infection intensity also drives fungal disease dynamics, but we lack a basic understanding of host-fungal aggregation patterns, how they compare to macroparasites, and if they reflect biological processes. To address these gaps, we characterized aggregation of the fungal pathogen (Bd) in amphibian hosts. Utilizing the slope of Taylor's Power Law, we found Bd intensity distributions were more aggregated than macroparasites, conforming closely to lognormal distributions. We observed that Bd aggregation patterns are strongly correlated with known biological processes operating in amphibian populations, such as epizoological phase-invasion, post-invasion, and enzootic-and intensity-dependent disease mortality. Using intensity-dependent mathematical models, we found evidence of evolution of host resistance based on aggregation shifts in systems persisting with Bd following disease-induced declines. Our results show that Bd aggregation is highly conserved across disparate systems and is distinct from aggregation patterns in macroparasites, and contains signatures of potential biological processes of amphibian-Bd systems. Our work lays a foundation to unite host-fungal dynamics under a common theoretical framework and inform future modeling approaches that may elucidate host-fungus interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384020PMC
http://dx.doi.org/10.1101/2024.08.29.609018DOI Listing

Publication Analysis

Top Keywords

aggregation patterns
12
biological processes
12
aggregation
8
fungi macroparasites?
4
macroparasites? quantifying
4
patterns
4
quantifying patterns
4
patterns mechanisms
4
mechanisms aggregation
4
aggregation host-fungal
4

Similar Publications

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

In vitro assessment of the inhibitory effect of antiplatelet drugs on platelet aggregation is frequently employed to guide personalized antiplatelet therapy in clinical practice. However, existing methods for detecting platelet aggregation rely heavily on high concentrations of exogenous agonists, which may obscure part of the inhibitory effect of antiplatelet drugs and lead to an underestimation of their effects. This study validates a novel analytical strategy for evaluating the effects of antiplatelet drugs by quantifying the microscopic three-dimensional morphological parameters of platelet aggregates formed through spontaneous aggregation on a glass surface.

View Article and Find Full Text PDF

A Python-scripted software tool has been developed to help study the heterogeneity of gene changes, markedly or moderately expressed, when several experimental conditions are compared. The analysis workflow encloses a scorecard that groups genes based on relative fold-change and statistical significance, providing additional functions that facilitate knowledge extraction. The scorecard reports highlight unique patterns of gene regulation, such as genes whose expression is consistently up- or down-regulated across experiments, all of which are supported by graphs and summaries to characterize the dataset under investigation.

View Article and Find Full Text PDF

Biofilm lifestyle across different lineages of ammonia-oxidizing archaea.

ISME J

September 2025

Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.

Although ammonia-oxidizing archaea (AOA) are globally distributed in nature, growth in biofilms has been relatively little explored. Here we investigated six representatives of three different terrestrial and marine clades of AOA in a longitudinal and quantitative study for their ability to form biofilm, and studied gene expression patterns of three representatives. Although all strains grew on a solid surface, soil strains of the genera Nitrosocosmicus and Nitrososphaera exhibited the highest capacity for biofilm formation.

View Article and Find Full Text PDF

Transition of Structurally Distinct Amyloids in the Degradation of Protein Materials.

J Phys Chem B

September 2025

Chemistry Division, Code 6176, US Naval Research Laboratory, Washington, D.C. 20375, United States.

Amyloid materials are formed from the aggregation of single proteins, yet contain polymorphisms where bulk properties are defined by a composition of multiple fibril types. Though desirable as a sustainable material, little is known about how various fibril types survive at high temperatures or in nonpolar solvents due to their highly similar molecular and nanoscale features. Here, we demonstrate that in situ two-dimensional infrared spectroscopy (2DIR), when paired with nanoscale microscopy, can determine the transition temperature of amyloid subpopulations without the use of labels.

View Article and Find Full Text PDF