98%
921
2 minutes
20
Methyltransferase PRC2 (Polycomb Repressive Complex 2) introduces histone H3K27 trimethylation, a repressive chromatin mark, to tune the differential expression of genes. PRC2 is precisely regulated by accessory proteins, histone post-translational modifications and, notably, RNA. Research on PRC2-associated RNA has mostly focused on the tight-binding G-quadruplex (G4) RNAs, which inhibit PRC2 enzymatic activity in vitro and in cells. Our recent cryo-EM structure provided a molecular mechanism for G4 RNA inactivating PRC2 via dimerization, but it remained unclear how diverse RNAs associate with and regulate PRC2. Here, we show that a single-stranded G-rich RNA and an atypical G4 structure called pUG-fold unexpectedly also mediate near-identical PRC2 dimerization resulting in inhibition of PRC2 methyltransferase activity. The conformational flexibility of arginine-rich loops within subunits EZH2 and AEBP2 of PRC2 can accommodate diverse RNA secondary structures, resulting in protein-RNA and protein-protein interfaces similar to those observed previously with G4 RNA. Furthermore, we address a recent report that failed to detect PRC2-associated RNAs in living cells by demonstrating the insensitivity of PRC2-RNA interaction to photochemical crosslinking. Our results support the significance of RNA-mediated PRC2 regulation by showing that this interaction is not limited to a single RNA secondary structure, consistent with the broad PRC2 transcriptome containing many G-tract RNAs incapable of folding into G4 structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383989 | PMC |
http://dx.doi.org/10.1101/2024.08.29.610323 | DOI Listing |
Polycomb repressive complex 2 (PRC2) mediates developmental gene repression as two classes of holocomplexes, PRC2.1 and PRC2.2.
View Article and Find Full Text PDFMol Cell
October 2024
Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany. Electronic address:
Polycomb repressive complex 2 (PRC2) is an epigenetic regulator that trimethylates lysine 27 of histone 3 (H3K27me3) and is essential for embryonic development and cellular differentiation. H3K27me3 is associated with transcriptionally repressed chromatin and is established when PRC2 is allosterically activated upon methyl-lysine binding by the regulatory subunit EED. Automethylation of the catalytic subunit enhancer of zeste homolog 2 (EZH2) stimulates its activity by an unknown mechanism.
View Article and Find Full Text PDFMethyltransferase PRC2 (Polycomb Repressive Complex 2) introduces histone H3K27 trimethylation, a repressive chromatin mark, to tune the differential expression of genes. PRC2 is precisely regulated by accessory proteins, histone post-translational modifications and, notably, RNA. Research on PRC2-associated RNA has mostly focused on the tight-binding G-quadruplex (G4) RNAs, which inhibit PRC2 enzymatic activity in vitro and in cells.
View Article and Find Full Text PDFMol Cell
March 2024
Genome Biology Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain. Electronic address: lucian
The Polycomb repressive complex 2 (PRC2) mediates epigenetic maintenance of gene silencing in eukaryotes via methylation of histone H3 at lysine 27 (H3K27). Accessory factors define two distinct subtypes, PRC2.1 and PRC2.
View Article and Find Full Text PDFPhotochem Photobiol
July 2024
Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois, USA.
Ultraviolet B (UVB) radiation represents a major carcinogen for the development of all skin cancer types. Mechanistically, UVB induces damage to DNA in the form of lesions, including cyclobutane pyrimidine dimers (CPDs). Disruption of the functional repair processes, such as nucleotide excision repair (NER), allows persistence of DNA damage and contributes to skin carcinogenesis.
View Article and Find Full Text PDF