Assessment of ecological civilization construction from the perspective of environment and health in China.

Eco Environ Health

Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study innovatively evaluated ecological civilization in China from the perspective of environment and health. A Composite Environmental Health Index (CEHI) was constructed based on the Driving force-Pressure-State-Impact-Response (DPSIR) and Coupling Coordination Degree (CCD) models. Results showed that significant and sustained improvements were observed in the ecological environment after ecological civilization, while economic development continued to progress at a steady pace. However, the advancement in population health (impact subsystem), exhibited comparatively modest progress, potentially linked to issues such as demographic aging and the enduring consequences of past exposure to environmental pollutants. At the provincial level, the regional development was uneven. The CEHI performance was highest in the eastern regions, followed by the central regions, with the western regions showing the least progress. Beijing, Guangdong, Jiangsu, Shanghai, and Zhejiang emerged as top performers with higher CEHI scores, which can be attributed to their favorable geographical positioning and the response subsystem. Conversely, northeastern regions (Heilongjiang, Jilin, and Liaoning) and northwestern regions (Shanxi, Gansu, Ningxia, and Qinghai) experienced limited advancements in post-ecological civilization implementation. For these underperforming regions, there is a pressing need to intensify efforts aimed at enhancing their response subsystems. In summary, China's pursuit of ecological civilization has yielded significant successes, potentially offering valuable insights for other nations striving for sustainable development. The ecological civilization model's integration of ecological environmental protection into economic, political, cultural, and social constructs may serve as a meaningful reference for the sustainable development of other countries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381979PMC
http://dx.doi.org/10.1016/j.eehl.2024.02.008DOI Listing

Publication Analysis

Top Keywords

ecological civilization
20
perspective environment
8
environment health
8
sustainable development
8
civilization
6
ecological
6
regions
6
assessment ecological
4
civilization construction
4
construction perspective
4

Similar Publications

Adsorption-desorption behavior of difenoconazole onto soils: Kinetics, isotherms, and influencing factors.

Pestic Biochem Physiol

November 2025

National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, PR China. Electronic address: wj

Difenoconazole (DFC) is a commonly used triazole fungicide known for its high efficiency and environmental persistence. A thorough understanding of its environmental behavior, particularly sorption in soil, is critical to obtain a comprehensive assessment of the ecological risk of DFC. In this study, three soils with distinct physicochemical properties (brown soil, cinnamon soil, and fluvo-aquic soil) were used to elucidate the adsorption mechanisms of DFC on soil.

View Article and Find Full Text PDF

Phosphogypsum and Carbide Slag Synergy for Red Mud Soil Stabilization: Mechanical Performance, Environmental Impacts, and Micro-scale Mechanisms.

Environ Res

September 2025

China Construction Fourth Engineering Bureau Fifth Construction Engineering Co., Ltd. Nanxin Road, Nanshan District, Shenzhen, 518000, China. Electronic address:

The production of phosphogypsum (PG), calcium carbide slag (CS), and red mud (RM) in global industrial development imposes serious environmental issues. Utilizing CS and PG as curing agents and incorporating RM as a soil substitute can facilitate the solid waste resource utilization. However, few studies have investigated the synergistic effects of PG and CS on the stabilization of RM and soil.

View Article and Find Full Text PDF

Alpine ecosystems are critical for water regulation but highly sensitive to climate change. In the Three-River Source Region (TRSR) of the Qinghai-Tibet Plateau, changes in temperature, precipitation, and large-scale ecological restoration have significantly altered vegetation phenology-including the start (SOS), end (EOS), and length (LOS) of the growing season, as well as vegetation growth status (GS). These shifts affect hydrological processes such as evapotranspiration, soil moisture, snowmelt, and runoff.

View Article and Find Full Text PDF

Trophic-level accumulation and transfer of legacy and emerging contaminants in marine biota: meta-analysis of mercury, PCBs, microplastics, PFAS, PAHs.

Mar Pollut Bull

September 2025

Florida International University, Civil and Environmental Engineering, 10555 West Flagler Street, Engineering Center, Miami, Florida 33174, USA. Electronic address:

Marine ecosystems are increasingly threatened by anthropogenic pollutants, including plastics, persistent organic pollutants, heavy metals, oil, and emerging contaminants. This meta-analysis examined the accumulation patterns of five major contaminants-mercury (Hg), polychlorinated biphenyls (PCBs), microplastics, per- and polyfluoroalkyl substances (PFAS), and polycyclic aromatic hydrocarbons (PAHs)-in relation to trophic level and lifespan across marine species. Data synthesis revealed distinct differences in bioaccumulation and biomagnification between legacy and emerging contaminants.

View Article and Find Full Text PDF

Concrete production significantly contributes to CO emissions and depletion of natural resources, leading to substantial environmental concerns. The integration of polymers into concrete has emerged as a promising innovative solution aimed at overcoming inherent limitations of traditional concrete, including brittleness, susceptibility to tracking, environmental degradation, and substantial ecological impacts. This systematic review thoroughly investigates the properties, sustainability implications, and practical challenges associated with polymer-based concrete (PBC), particularly focusing on polymer concrete composites (PCC) and polymer-modified concrete (PMC) detailing their composition, mechanical behavior, and durability.

View Article and Find Full Text PDF