A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Promotion of aromatic amino acids of extracellular polymeric substance targeted transformation via sulfite mediated iron redox cycling in sludge solid-liquid separation. | LitMetric

Promotion of aromatic amino acids of extracellular polymeric substance targeted transformation via sulfite mediated iron redox cycling in sludge solid-liquid separation.

Water Res

Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China. Electronic address:

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Highly hydrophilic extracellular polymeric substance (EPS) with gel-like structure seriously plagues the development of sludge deep dewatering. Oxysulfur radicals-based oxidation driven by iron-bearing mineral proposes a promising strategy for effective EPS decomposition. However, the transformation and involved interaction mechanisms of aromatic proteins are still controversial due to the complex EPS structure. Herein, sulfite mediated siderite (denoted as Fe(II)/S(IV)) was developed for targeted transformation aromatic amino acids in EPS oxidation to strengthen sludge solid-liquid separation. The enhanced sludge dewaterability were benefited from the Fe(II)/S(IV) bonded interaction assisted by Fe/Fe as redox interface that facilitating the release of intracellular bound water via diminish the hydrophily and bind strength with solid protons. The amide region nitrogen of aromatic amino acids (especially tyrosine and tryptophan) originating from EPS presented looser structure and lower spatial site resistance, which were attributed to the exposure of hydrophobic sites in amino groups after Fe(II)/S(IV) treatment. Furthermore, the effective decline of aromatic amino acids in inner layer-EPS (loosely bound EPS and tightly bound EPS) was directed from Fe-N targeted interaction by triggering a series of sulfate-based radical chain reactions. The good correlation between electron transfer amount (R = 0.926) and Fe-N (R = 0.925) with bonding interaction demonstrated that the complexation of aromatic amino acids with Fe sites on siderite/sulfite via Fe-N bonds, accounting for efficient sludge solid-liquid separation. This study deepens the understanding of sludge organic matter targeted transformation and provides a tactic for iron-based conditioning of sludge.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122369DOI Listing

Publication Analysis

Top Keywords

aromatic amino
20
amino acids
20
targeted transformation
12
sludge solid-liquid
12
solid-liquid separation
12
extracellular polymeric
8
polymeric substance
8
sulfite mediated
8
bound eps
8
sludge
7

Similar Publications