Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Contrast-enhanced magnetic resonance neurography (CE-MRN) holds promise for diagnosing brachial plexopathy by enhancing nerve visualization and revealing additional imaging features in various lesions. This study aims to validate CE-MRN's efficacy in improving brachial plexus (BP) imaging across different patient cohorts. Seventy-one subjects, including 19 volunteers and 52 patients with BP compression/entrapment, injury, and neoplasms, underwent both CE-MRN and plain MRN. Two radiologists assessed nerve visibility, with inter-reader agreement evaluated. Quantitative parameters such as signal intensity (SI), contrast-to-noise ratio (CNR), and contrast ratio (CR) of the C7 nerve were measured. Both qualitative scoring and quantitative metrics were compared between CE-MRN and plain MRN within each patient group. Patient classification followed the Neuropathy Score Reporting and Data System (NS-RADS), summarizing additional imaging features for each brachial plexopathy type. Inter-reader agreement for qualitative assessment was strong. CE-MRN significantly enhanced BP visualization and nerve-tissue contrast across all cohorts, particularly in volunteers and patients with injuries. It also uncovered additional imaging features such as hypointense signals in ganglia, compressed nerve sites, and neoplastic enhancements. CE-MRN effectively mitigated muscle edema and vascular contamination, enabling precise classification of BP injuries. Overall, CE-MRN consistently enhances BP visualization and provides valuable imaging features for accurate diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377534PMC
http://dx.doi.org/10.1038/s41598-024-71554-5DOI Listing

Publication Analysis

Top Keywords

imaging features
20
additional imaging
16
brachial plexopathy
12
contrast-enhanced magnetic
8
magnetic resonance
8
resonance neurography
8
diagnosing brachial
8
volunteers patients
8
ce-mrn plain
8
plain mrn
8

Similar Publications

Background: IgG4-related lung disease (IgG4-RLD) is a rare autoimmune condition. This study aims to systematically analyze the clinical characteristics of IgG4-RLD to enhance clinicians' awareness and improve patient outcomes.

Methods: This retrospective analysis investigates the clinical data of 20 patients diagnosed with IgG4-RLD at the Yichang Central People's Hospital between January 2019 and April 2025.

View Article and Find Full Text PDF

Purpose: Amino acid PET with [F]-fluoroethylthyrosine ([F]FET-PET) is frequently utilized in gliomas. Most studies on prognostication based on amino acid PET comprise mixed cohorts of brain tumors with low- and high-grade features. The objective of this study was to assess the potential prognostic value of [F]FET-PET-based markers in the group of grade 2 adult-type diffuse gliomas, as defined by the WHO CNS 2021 classification.

View Article and Find Full Text PDF

Hypoxia has been extensively studied as a stressor which pushes human bodily systems to responses and adaptations. Nevertheless, a few evidence exist onto constituent trains of motor unit action potential, despite recent advancements which allow to decompose surface electromyographic signals. This study aimed to investigate motor unit properties from noninvasive approaches during maximal isometric exercise in normobaric hypoxia.

View Article and Find Full Text PDF

Getting caregivers to respond to their pain cries is vital for the human baby. Previous studies have shown that certain features of baby cries-the nonlinear phenomena (NLP)-enable caregivers to assess the pain felt by the baby. However, the extent to which these NLP mobilize the autonomic nervous system of an adult listener remains unexplored.

View Article and Find Full Text PDF

Rapid and sensitive acute leukemia classification and diagnosis platform using deep learning-assisted SERS detection.

Cell Rep Med

August 2025

Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Mole

Rapid identification and accurate diagnosis are critical for individuals with acute leukemia (AL). Here, we propose a combined deep learning and surface-enhanced Raman scattering (DL-SERS) classification strategy to achieve rapid and sensitive identification of AL with various subtypes and genetic abnormalities. More than 390 of cerebrospinal fluid (CSF) samples are collected as targets, encompassing healthy control, AL patients, and individuals with other diseases.

View Article and Find Full Text PDF