98%
921
2 minutes
20
Queuosine (Q) stands out as the sole tRNA modification that can be synthesized via salvage pathways. Comparative genomic analyses identified specific bacteria that showed a discrepancy between the projected Q salvage route and the predicted substrate specificities of the two identified salvage proteins: (1) the distinctive enzyme tRNA guanine-34 transglycosylase (bacterial TGT, or bTGT), responsible for inserting precursor bases into target tRNAs; and (2) queuosine precursor transporter (QPTR), a transporter protein that imports Q precursors. Organisms such as the facultative intracellular pathogen , which possess only bTGT and QPTR but lack predicted enzymes for converting preQ to Q, would be expected to salvage the queuine (q) base, mirroring the scenario for the obligate intracellular pathogen . However, sequence analyses indicate that the substrate-specificity residues of their bTGTs resemble those of enzymes inserting preQ rather than q. Intriguingly, MS analyses of tRNA modification profiles in reveal trace amounts of preQ, previously not observed in a natural context. Complementation analysis demonstrates that bTGT and QPTR not only utilize preQ, akin to their counterparts, but can also process q when provided at elevated concentrations. The experimental and phylogenomic analyses suggest that the Q pathway in could represent an evolutionary transition among intracellular pathogens - from ancestors that synthesized Q to a state prioritizing the salvage of q. Another possibility that will require further investigations is that the insertion of preQ confers fitness advantages when is growing outside a mammalian host.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570991 | PMC |
http://dx.doi.org/10.1099/mic.0.001490 | DOI Listing |
Front Cardiovasc Med
August 2025
The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China.
tRNA-derived small RNAs (tsRNAs) are a class of non-coding RNAs that are generated by cleavage of precursors or mature tRNAs under stress conditions such as hypoxia, oxidative stress and nutrient deficiency. Recent breakthroughs in RNA sequencing technology have revealed their association with cardiovascular diseases (CVDs), including myocardial infarction (MI), atherosclerosis, cardiac hypertrophy, aortic coarctation, and pulmonary arterial hypertension. tsRNAs play important biological functions in these diseases, including the inhibition of apoptosis, epigenetic modification, intercellular signaling mediation, translation, and regulation of gene expression.
View Article and Find Full Text PDFJ Biol Chem
September 2025
Department of Chemistry and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, 27109. Electronic address:
The AUA isoleucine codon is generally rare and used with varying frequency in bacterial genomes. The tRNA responsible for decoding this trinucleotide must be modified at the wobble position by tRNA lysidine synthetase (TilS) prior to aminoacylation and accommodation at the ribosome. To test the hypothesis that TilS catalytic efficiency correlates with AUA frequency, we cloned tilS genes from bacteria with varying AUA codon usage.
View Article and Find Full Text PDFRibosomal RNA (rRNA) modifications are important for ribosome function and can influence bacterial susceptibility to ribosome-targeting antibiotics. The universally conserved 16S rRNA nucleotide C1402, for example, is the only 2'- -methylated nucleotide in the bacterial small (30S) ribosomal subunit and this modification fine tunes the shape and structure of the peptidyl tRNA binding site. The Cm1402 modification is incorporated by the conserved bacterial 16S rRNA methyltransferase RsmI, but it is unclear how RsmI is able to recognize its 30S substrate and specifically modify its buried target nucleotide.
View Article and Find Full Text PDFMetastasis is the leading cause of cancer related deaths, however therapies specifically targeting metastasis are lacking and remain a dire therapeutic need in the clinic. Metastasis is a highly inefficient process that is inhibited by extracellular stress. Therefore, metastasizing cells that ultimately survive and successfully colonize distant organs must undergo molecular rewiring to mitigate stress.
View Article and Find Full Text PDFArtemisinin has long been a first-line antimalarial. Yet, its mode of action is still poorly understood. Emergence of artemisinin-resistant strains highlight the importance of addressing this question so as to develop better drugs and overcome resistance.
View Article and Find Full Text PDF