98%
921
2 minutes
20
Colloidal droplet evaporation is an intriguing and intricate phenomenon that has captured the interest of scientists across diverse disciplines, including physical chemistry, fluid dynamics, and soft matter science, over the past two decades. Despite being a non-equilibrium system with inherent challenges posed by coffee ring formation and Marangoni effects, which hinder the precise control of deposition patterns, evaporative self-assembly presents a convenient and cost-effective approach for generating arrays of well-ordered structures and functional patterns with wide-ranging applications in inkjet printing, photonic crystals, and biochemical assays. In the realm of printed electronics and photonics, effectively mitigating coffee rings while achieving uniformity and orderliness has emerged as a critical factor in realising the next generation of large-area, low-cost, flexible devices that are exceptionally sensitive and high-performance. This review highlights the evaporative self-assembly process in colloidal droplets with a focus on the intricate mechanical environment, self-assembly at diverse interfaces, and potential applications of these assembling ordered structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2024.103286 | DOI Listing |
Angew Chem Int Ed Engl
September 2025
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulju-gun, UNIST-gil 50, Ulsan, 44919, Republic of Korea.
Structurally colored colloids, or photonic pigments, offer a sustainable alternative to conventional dyes, yet existing systems are constrained by limited morphologies and complex synthesis. In particular, achieving angle-independent color typically relies on disordered inverse architectures formed from synthetically demanding bottlebrush block copolymers (BCPs), hindering scalability and functional diversity. Here, we report a conceptually distinct strategy to assemble three-dimensional inverse photonic glass microparticles using amphiphilic linear BCPs (poly(styrene-block-4-vinylpyridine), PS-b-P4VP) via an emulsion-templated process.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Food Science and Agricultural Chemistry, McGill University, Quebec H9X 3V9, Canada.
Passive daytime radiative cooling (PDRC) offers a sustainable solution to global energy challenges by dissipating heat without energy input. However, conventional PDRC materials face trade-offs between biodegradability, color integration, optical transparency, and mechanical robustness. Herein, a biomimetic, structurally colored PDRC film fabricated via evaporation-induced self-assembly of cellulose nanocrystals (CNCs), betaine, and polyvinyl alcohol was developed.
View Article and Find Full Text PDFAdv Mater
September 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
Triboelectric sweat sensors, endowed with the technical advantages of non-invasive ex vivo and in situ detection, have catalyzed the rapid advancement of personalized medicine and precision health management systems. However, the inherently low secretion rate and rapid evaporation of sweat pose significant challenges for its efficient collection and rapid analytical screening. This study leverages laser cutting and aqueous interfacial self-assembly strategies to develop a biomimetic heterogeneous wettability triboelectric material (HWTM).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
Engineering guest-responsive materials capable of controlled and precise sorption behavior and structural deformation in response to external stimuli is imperative for various applications. However, existing systems often exhibit complex, unpredictable dynamics, posing challenges for efficient control and utilization. Here, we design crystalline metal-peptide frameworks with tunable water-responsive (WR) dynamics by assembling glycine-threonine (Gly-Thr, GT) or glycine-serine (Gly-Ser, GS) peptides with zinc (Zn) ions, achieving either continuous or discrete threshold water-sorption-dependent phase transitions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2025
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Programmed assembly of natural materials on a large scale is often limited by inherent factors, including dimensional dispersity, complex hierarchical organization, and slow processing kinetics. In this study, we demonstrate a scalable strategy to preprogram the chiral assembly of cellulose nanocrystals (CNCs) by applying a rotational magnetic field during evaporation-induced self-assembly. To facilitate magnetic responsiveness, CNCs are decorated with magnetic nanoparticles and subjected to a rotational magnetic field.
View Article and Find Full Text PDF