Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Freshwater resources have been gradually salinized in recent years, dramatically impacting the ecosystem and human health. Therefore, it is necessary to detect the salinity of freshwater resources. However, traditional detection methods make it difficult to check the type and concentration of salt quickly and accurately in solution. This paper uses a portable near-infrared spectrometer to qualitatively discriminate and quantitatively predict the salt in the solution. The study was carried out by adding ten salts of NaCl, KCl, MgCl, CaCl, NaCO, KCO, CaCO, NaSO, KSO, MgSO to 2 mL of deionized water to prepare a single salt solution (0.02 %-1.00 %) totaling 100 sets. It was found that the Support vector machine (SVM) model was only effective in discriminating the class of salt anions in the solution. The Partial least squares-discriminant analysis (PLS-DA) model, on the other hand, can effectively discriminate the classes of salt in solution, and the accuracies of the optimal model prediction set and the interactive validation set are 98.86 % and 99.66 %, respectively. Furthermore, the Partial least squares regression (PLSR) models can accurately predict the concentration of NaCl, KCl, MgCl, CaCl, NaCO, KCO, CaCO, NaSO, KSO, MgSO salt solutions. The coefficients of determination R of their model interactive validation sets were 0.99, 0.99, 0.99, 0.97, 0.99, 0.99, 0.98, 0.99, 0.98, and 0.98, respectively. This study shows that NIRS can achieve rapid and accurate qualitative and quantitative detection of salts in solution, which provides technical support for the utilization of safe water resources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.126751DOI Listing

Publication Analysis

Top Keywords

salt solution
12
099 099
12
freshwater resources
8
nacl kcl
8
kcl mgcl
8
mgcl cacl
8
cacl naco
8
naco kco
8
kco caco
8
caco naso
8

Similar Publications

Background: Assessing human movement is essential for diagnosing and monitoring movement-related conditions like neuromuscular disorders. Timed function tests (TFTs) are among the most widespread types of assessments due to their speed and simplicity, but they cannot capture disease-specific movement patterns. Conversely, biomechanical analysis can produce sensitive disease-specific biomarkers, but it is traditionally confined to laboratory settings.

View Article and Find Full Text PDF

Determination of alcohol concentration in a single drop blood obtained via fingertip using gas chromatography/mass spectrometry coupled with solid-phase microextraction.

Leg Med (Tokyo)

September 2025

Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.

This study investigated headspace solid-phase microextraction (HS-SPME)-gas chromatography (GS)/mass spectrometry as a low-complexity method for accurate measurement of blood alcohol concentration (BAC) changes in humans over time following alcohol consumption. The aim was to develop an analytical method that would require as small blood samples as possible-smaller than that required for the conventional method-thereby reducing the burden on the subject. Polyethylene glycol (PEG) was used as the fiber material for SPME, and a DB-WAX capillary column was used for GC.

View Article and Find Full Text PDF

Hydrogen Bond Disruption-Induced Ion Rearrangement in Acetonitrile-Water-Sodium Sulfate Solutions.

J Phys Chem B

September 2025

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.

Understanding hydrogen bonding and ion-specific interactions in water, sodium sulfate (NaSO), and acetonitrile (ACN) systems remains challenging due to their complex, dynamic nature. Here, Raman spectroscopy is employed to probe hydrogen bonding networks and ion reorganization in NaSO aqueous solutions with different ACN concentrations. The results indicate that, at low ACN concentrations in the ternary solutions, hydrogen bonding between ACN and water molecules disrupts the original hydration structure of the ions, resulting in the formation of small ion clusters via electrostatic interactions.

View Article and Find Full Text PDF

Ether-based electrolytes are widely acknowledged for their potential to form stable solid electrolyte interfaces (SEIs) for stable anode performance. However, conventional ether-based electrolytes have shown a tendency for cation-solvent co-intercalation phenomena on graphite electrodes, resulting in lower capacity and higher voltage platforms compared to those of neat cation insertion in ester-based electrolytes. In response, we propose the development of weakly solvating ether solvents to weaken the interaction between cations and solvents, thereby suppressing co-intercalation behavior.

View Article and Find Full Text PDF

Monoclonal antibodies (mAb) have transformed modern medicine, offering targeted therapies for cancer, autoimmune disorders, and infectious diseases. To enhance patient convenience, subcutaneous administration is increasingly prioritized, requiring highly concentrated formulations. However, high viscosity of these formulations hinders manufacturability, injectability, and stability.

View Article and Find Full Text PDF