The mTOR pathway controls phosphorylation of BRAF at T401.

Cell Commun Signal

Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

BRAF serves as a gatekeeper of the RAS/RAF/MEK/ERK pathway, which plays a crucial role in homeostasis. Since aberrant signalling of this axis contributes to cancer and other diseases, it is tightly regulated by crosstalk with the PI3K/AKT/mTOR pathway and ERK mediated feedback loops. For example, ERK limits BRAF signalling through phosphorylation of multiple residues. One of these, T401, is widely considered as an ERK substrate following acute pathway activation by growth factors. Here, we demonstrate that prominent T401 phosphorylation (pT401) of endogenous BRAF is already observed in the absence of acute stimulation in various cell lines of murine and human origin. Importantly, the BRAF/RAF1 inhibitor naporafenib, the MEK inhibitor trametinib and the ERK inhibitor ulixertinib failed to reduce pT401 levels in these settings, supporting an alternative ERK-independent pathway to T401 phosphorylation. In contrast, the mTOR inhibitor torin1 and the dual-specific PI3K/mTOR inhibitor dactolisib significantly suppressed pT401 levels in all investigated cell types, in both a time and concentration dependent manner. Conversely, genetic mTOR pathway activation by oncogenic RHEB (Q64L) and mTOR (S2215Y and R2505P) mutants substantially increased pT401, an effect that was reverted by dactolisib and torin1 but not by trametinib. We also show that shRNAmir mediated depletion of the mTORC1 complex subunit Raptor significantly enhanced the suppression of T401 phosphorylation by a low torin1 dose, while knockdown of the mTORC2 complex subunit Rictor was less effective. Using mass spectrometry, we provide further evidence that torin1 suppresses the phosphorylation of T401, S405 and S409 but not of other important regulatory phosphorylation sites such as S446, S729 and S750. In summary, our data identify the mTOR axis and its inhibitors of (pre)clinical relevance as novel modulators of BRAF phosphorylation at T401.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370054PMC
http://dx.doi.org/10.1186/s12964-024-01808-2DOI Listing

Publication Analysis

Top Keywords

t401 phosphorylation
12
mtor pathway
8
phosphorylation
8
pathway activation
8
pt401 levels
8
complex subunit
8
phosphorylation t401
8
t401
7
mtor
5
braf
5

Similar Publications

Osteoarthritis (OA) inflammatory microenvironment triggered glucose metabolism and mitochondrial dysfunction in chondrocytes, leading to a shift of metabolic tendency between oxidative phosphorylation and anaerobic glycolysis. Thioredoxin-interacting protein (Txnip) increased production of reactive oxygen species (ROS), which exacerbates oxidative stress, inflammation and further accelerates cartilage degeneration and extracellular matrix (ECM) degradation. Txnip expression is also positively correlated with several critical pathological glucose and lipid metabolism processes beyond inflammation and endoplasmic reticulum stress (ERS).

View Article and Find Full Text PDF

The mTOR pathway controls phosphorylation of BRAF at T401.

Cell Commun Signal

September 2024

Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany.

BRAF serves as a gatekeeper of the RAS/RAF/MEK/ERK pathway, which plays a crucial role in homeostasis. Since aberrant signalling of this axis contributes to cancer and other diseases, it is tightly regulated by crosstalk with the PI3K/AKT/mTOR pathway and ERK mediated feedback loops. For example, ERK limits BRAF signalling through phosphorylation of multiple residues.

View Article and Find Full Text PDF

Autophosphorylation Is a Mechanism of Inhibition in Twitchin Kinase.

J Mol Biol

March 2018

Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK. Electronic address:

Titin-like kinases are muscle-specific kinases that regulate mechanical sensing in the sarcomere. Twitchin kinase (TwcK) is the best-characterized member of this family, both structurally and enzymatically. TwcK activity is auto-inhibited by a dual intrasteric mechanism, in which N- and C-terminal tail extensions wrap around the kinase domain, blocking the hinge region, the ATP binding pocket and the peptide substrate binding groove.

View Article and Find Full Text PDF

Keratin 8/18, a simple epithelia specific keratin pair, is often aberrantly expressed in squamous cell carcinomas (SCC) where its expression is correlated with increased invasion and poor prognosis. Majority of Keratin 8 (K8) functions are governed by its phosphorylation at Serine (head-domain) and Serine (tail-domain) residues. Although, deregulation of K8 phosphorylation is associated with progression of different carcinomas, its role in skin-SCC and the underlying mechanism is obscure.

View Article and Find Full Text PDF

B-Raf represents a critical physiological regulator of the Ras/RAF/MEK/ERK-pathway and a pharmacological target of growing clinical relevance, in particular in oncology. To understand how B-Raf itself is regulated, we combined mass spectrometry with genetic approaches to map its interactome in MCF-10A cells as well as in B-Raf deficient murine embryonic fibroblasts (MEFs) and B-Raf/Raf-1 double deficient DT40 lymphoma cells complemented with wildtype or mutant B-Raf expression vectors. Using a multi-protease digestion approach, we identified a novel ubiquitination site and provide a detailed B-Raf phospho-map.

View Article and Find Full Text PDF