VSmTrans: A hybrid paradigm integrating self-attention and convolution for 3D medical image segmentation.

Med Image Anal

Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA, 19104. Electronic address:

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Vision Transformers recently achieved a competitive performance compared with CNNs due to their excellent capability of learning global representation. However, there are two major challenges when applying them to 3D image segmentation: i) Because of the large size of 3D medical images, comprehensive global information is hard to capture due to the enormous computational costs. ii) Insufficient local inductive bias in Transformers affects the ability to segment detailed features such as ambiguous and subtly defined boundaries. Hence, to apply the Vision Transformer mechanism in the medical image segmentation field, the above challenges need to be overcome adequately.

Methods: We propose a hybrid paradigm, called Variable-Shape Mixed Transformer (VSmTrans), that integrates self-attention and convolution and can enjoy the benefits of free learning of both complex relationships from the self-attention mechanism and the local prior knowledge from convolution. Specifically, we designed a Variable-Shape self-attention mechanism, which can rapidly expand the receptive field without extra computing cost and achieve a good trade-off between global awareness and local details. In addition, the parallel convolution paradigm introduces strong local inductive bias to facilitate the ability to excavate details. Meanwhile, a pair of learnable parameters can automatically adjust the importance of the above two paradigms. Extensive experiments were conducted on two public medical image datasets with different modalities: the AMOS CT dataset and the BraTS2021 MRI dataset.

Results: Our method achieves the best average Dice scores of 88.3 % and 89.7 % on these datasets, which are superior to the previous state-of-the-art Swin Transformer-based and CNN-based architectures. A series of ablation experiments were also conducted to verify the efficiency of the proposed hybrid mechanism and the components and explore the effectiveness of those key parameters in VSmTrans.

Conclusions: The proposed hybrid Transformer-based backbone network for 3D medical image segmentation can tightly integrate self-attention and convolution to exploit the advantages of these two paradigms. The experimental results demonstrate our method's superiority compared to other state-of-the-art methods. The hybrid paradigm seems to be most appropriate to the medical image segmentation field. The ablation experiments also demonstrate that the proposed hybrid mechanism can effectively balance large receptive fields with local inductive biases, resulting in highly accurate segmentation results, especially in capturing details. Our code is available at https://github.com/qingze-bai/VSmTrans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381179PMC
http://dx.doi.org/10.1016/j.media.2024.103295DOI Listing

Publication Analysis

Top Keywords

medical image
20
image segmentation
20
hybrid paradigm
12
self-attention convolution
12
local inductive
12
proposed hybrid
12
inductive bias
8
segmentation field
8
self-attention mechanism
8
experiments conducted
8

Similar Publications

Introduction: Medical physicists play a critical role in ensuring image quality and patient safety, but their routine evaluations are limited in scope and frequency compared to the breadth of clinical imaging practices. An electronic radiologist feedback system can augment medical physics oversight for quality improvement. This work presents a novel quality feedback system integrated into the Epic electronic medical record (EMR) at a university hospital system, designed to facilitate feedback from radiologists to medical physicists and technologist leaders.

View Article and Find Full Text PDF

Eating disorders are primarily associated with women and an obsession with thinness. Recent research and social media content show that men are also concerned about their body image, striving for a muscular and athletic physique. To investigate eating disorder tendencies among male content creators with a mesomorphic body type (N = 26), a social media analysis was conducted on Instagram and TikTok over four weeks.

View Article and Find Full Text PDF

Background: This study aimed to investigate the gender-specific associations of skeletal muscle mass and fat mass with non-alcoholic fatty liver disease (NAFLD) and NAFLD-related liver fibrosis in two population-based studies.

Methods: Analyses were based on data from the MEGA (n = 238) and the MEIA study (n = 594) conducted between 2018 and 2023 in Augsburg, Germany. Bioelectrical impedance analysis was used to evaluate relative skeletal muscle mass (rSM) and SM index (SMI) as well as relative fat mass (rFM) and FM index (FMI); furthermore, the fat-to-muscle ratio was built.

View Article and Find Full Text PDF

MRI-negative cerebellar syndrome caused by medication-induced magnesium deficiency: a case report.

BMC Neurol

September 2025

Department of Neurology, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen, North Rhine-Westphalia, Germany.

Background: Cerebellar pathologies in adults can have a wide range of hereditary, acquired and sporadic-degenerative causes. Due to the frequency in daily hospital, especially intensive care, settings, electrolyte imbalances are an important, yet rare differential diagnosis. The hypomagnesemia-induced cerebellar syndrome (HiCS) constitutes a relevant disease entity with clinical and morphological variability due to a potential progression of symptoms and a promising causal treatment.

View Article and Find Full Text PDF

Background: IgG4-related lung disease (IgG4-RLD) is a rare autoimmune condition. This study aims to systematically analyze the clinical characteristics of IgG4-RLD to enhance clinicians' awareness and improve patient outcomes.

Methods: This retrospective analysis investigates the clinical data of 20 patients diagnosed with IgG4-RLD at the Yichang Central People's Hospital between January 2019 and April 2025.

View Article and Find Full Text PDF