98%
921
2 minutes
20
Background And Aims: We previously identified small molecules predicted to reverse an ileal gene signature for future Crohn's Disease (CD) strictures. Here we used a new human intestinal organoid (HIO) model system containing macrophages to test a lead candidate, eicosatetraynoic acid (ETYA).
Methods: Induced pluripotent stem cell lines (iPSC) were derived from CD patients and differentiated into macrophages and HIOs. Macrophages and macrophage-HIO cocultures were exposed to lipopolysaccharide (LPS) with and without ETYA pretreatment. Cytospin and flow cytometry characterized macrophage morphology and activation markers, and RNA sequencing defined the global pattern of macrophage gene expression. TaqMan low-density array, Luminex multiplex assay, immunohistologic staining, and sirius red polarized light microscopy were performed to measure macrophage cytokine production and HIO profibrotic gene expression and collagen content.
Results: Induced PSC-derived macrophages exhibited morphology similar to primary macrophages and expressed inflammatory macrophage cell surface markers including CD64 and CD68. LPS-stimulated macrophages expressed a global pattern of gene expression enriched in CD ileal inflammatory macrophages and matrisome-secreted products and produced cytokines and chemokines including CCL2, IL1B, and OSM implicated in refractory disease. ETYA suppressed CD64 abundance and profibrotic gene expression pathways in LPS-stimulated macrophages. Coculture of LPS-primed macrophages with HIO led to upregulation of fibroblast activation genes including ACTA2 and COL1A1, and an increase in HIO collagen content. ETYA pretreatment prevented profibrotic effects of LPS-primed macrophages.
Conclusions: ETYA inhibits profibrotic effects of LPS-primed macrophages upon cocultured HIO. This model may be used in future untargeted screens for small molecules to treat refractory CD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836882 | PMC |
http://dx.doi.org/10.1093/ecco-jcc/jjae139 | DOI Listing |
J Pathol Transl Med
September 2025
Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
Background: C-C motif chemokine ligand 3 (CCL3) is a crucial chemokine that plays a fundamental role in the immune microenvironment and is closely linked to the development of various cancers. Despite its importance, there is limited research regarding the expression and function of CCL3 in nasopharyngeal carcinoma (NPC). Therefore, this study seeks to examine the expression of CCL3 and assess its clinical significance in NPC using bioinformatics analysis and experiments.
View Article and Find Full Text PDFJ Pathol Transl Med
September 2025
Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Background: Prostate cancer is one of the most common malignancies in males worldwide. Serum prostate-specific antigen is a frequently employed biomarker in the diagnosis and risk stratification of prostate cancer; however, it is known for its low predictive accuracy for disease progression. New prognostic biomarkers are needed to distinguish aggressive prostate cancer from low-risk disease.
View Article and Find Full Text PDFJ Pathol Transl Med
September 2025
Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea.
Central nervous system tumors with BCL6 corepressor (BCOR) internal tandem duplications (ITDs) constitute a rare, recently characterized pediatric neoplasm with distinct molecular and histopathological features. To date, 69 cases have been documented in the literature, including our institutional case. These neoplasms predominantly occur in young children, with the cerebellum representing the most frequent anatomical location.
View Article and Find Full Text PDFMacrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.
View Article and Find Full Text PDFCell Physiol Biochem
September 2025
Department of General Practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China, E-Mail:
Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.
View Article and Find Full Text PDF